Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4717, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170108

RESUMO

High entropy alloys (HEA) are an unusual class of materials where mixtures of elements are stochastically arrayed on a simple crystalline lattice. These systems exhibit remarkable functionality, often along several distinct axes: e.g., the examples [TaNb]1-x(TiZrHf)x are high strength and damage resistant refractory metals that also exhibit superconductivity with large upper critical fields. Here we report the discovery of an f-electron containing HEA, [TaNb]0.31(TiUHf)0.69, which is the first to include an actinide ion. Similar to the Zr-analogue, this material crystallizes in a body-centered cubic lattice with the lattice constant a = 3.41(1) Å and exhibits phonon mediated superconductivity with a transition temperatures Tc ≈ 3.2 K and upper critical fields Hc2 ≈ 6.4 T. These results expand this class of materials to include actinide elements, shows that superconductivity is robust in this sub-group, and opens the path towards leveraging HEAs as functional waste forms for a variety of radioisotopes.

2.
Nature ; 569(7757): 528-531, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118520

RESUMO

With the discovery1 of superconductivity at 203 kelvin in H3S, attention returned to conventional superconductors with properties that can be described by the Bardeen-Cooper-Schrieffer and the Migdal-Eliashberg theories. Although these theories predict the possibility of room-temperature superconductivity in metals that have certain favourable properties-such as lattice vibrations at high frequencies-they are not sufficient to guide the design or predict the properties of new superconducting materials. First-principles calculations based on density functional theory have enabled such predictions, and have suggested a new family of superconducting hydrides that possess a clathrate-like structure in which the host atom (calcium, yttrium, lanthanum) is at the centre of a cage formed by hydrogen atoms2-4. For LaH10 and YH10, the onset of superconductivity is predicted to occur at critical temperatures between 240 and 320 kelvin at megabar pressures3-6. Here we report superconductivity with a critical temperature of around 250 kelvin within the [Formula: see text] structure of LaH10 at a pressure of about 170 gigapascals. This is, to our knowledge, the highest critical temperature that has been confirmed so far in a superconducting material. Superconductivity was evidenced by the observation of zero resistance, an isotope effect, and a decrease in critical temperature under an external magnetic field, which suggested an upper critical magnetic field of about 136 tesla at zero temperature. The increase of around 50 kelvin compared with the previous highest critical temperature1 is an encouraging step towards the goal of achieving room-temperature superconductivity in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA