Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39374572

RESUMO

RATIONALE: While sex differences in right heart phenotypes have been observed, the molecular drivers remain unknown. OBJECTIVES: To provide biological insights into sex differences in the structure and function of the right ventricle (RV) using common genetic variation. METHODS: RV phenotypes were obtained from cardiac magnetic resonance imaging in 18,156 women and 16,171 men from the UK Biobank. Observational analyses and sex-stratified genome-wide association studies were performed. Candidate female-specific loci were evaluated against invasively measured cardiac performance in 479 female patients with idiopathic or heritable pulmonary arterial hypertension (PAH), recruited to the UK NIHR BioResource Rare Diseases study. MEASUREMENTS AND MAIN RESULTS: Sex was associated with differences in RV volumes and ejection fraction in models adjusting for left heart counterparts, blood pressure, lung function and sex hormone levels. Six genome-wide significant loci (13%) revealed heterogeneity of allelic effects between women and men, and significant sex-by-genotype interaction. These included two sex-specific candidate loci present in women only: a locus for RV ejection fraction in BMPR1A and a locus for RV end-systolic volume near DMRT2. Epigenetic data in RV tissue indicate that variation at the BMPR1A locus likely alters transcriptional regulation. In female patients with PAH, a variant located in the promoter of BMPR1A was significantly associated with cardiac index (effect size 0.16 l/min/m2), despite similar RV afterload. CONCLUSIONS: BMPR1A has emerged as a biologically plausible candidate gene for female-specific genetic determination of RV function, showing associations with cardiac performance under chronically increased afterload in female patients with PAH.

2.
bioRxiv ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39345371

RESUMO

Rationale: Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives: We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods: Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results: Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions: Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.

3.
Circulation ; 150(16): 1268-1287, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39167456

RESUMO

BACKGROUND: Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS: We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS: We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN, coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor-ß/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS: Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.


Assuntos
Proteínas da Matriz Extracelular , Pulmão , Hipertensão Arterial Pulmonar , Humanos , Animais , Pulmão/metabolismo , Pulmão/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Ratos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Masculino , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Transdução de Sinais , Perfilação da Expressão Gênica , Proteína Smad3/metabolismo , Proteína Smad3/genética , Feminino , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Proteína Smad2/genética , Transcriptoma , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Pessoa de Meia-Idade , Multiômica
4.
Nat Cardiovasc Res ; 3(7): 799-818, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39196173

RESUMO

Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving vascular remodeling in PVOD. Here we show that administration of MMC in rats mediates activation of protein kinase R (PKR) and the integrated stress response (ISR), which leads to the release of the endothelial adhesion molecule vascular endothelial (VE) cadherin (VE-Cad) in complex with RAD51 to the circulation, disruption of endothelial barrier and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates VE-Cad depletion, elevation of vascular permeability and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of the receptor BMPR2, underscoring the role of deregulated bone morphogenetic protein signaling in the development of PVOD.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Modelos Animais de Doenças , Fenótipo , Pneumopatia Veno-Oclusiva , Animais , Pneumopatia Veno-Oclusiva/genética , Pneumopatia Veno-Oclusiva/tratamento farmacológico , Pneumopatia Veno-Oclusiva/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Remodelação Vascular/efeitos dos fármacos , Caderinas/genética , Caderinas/metabolismo , Humanos , Masculino , Antígenos CD/metabolismo , Antígenos CD/genética , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Mutação , Permeabilidade Capilar/efeitos dos fármacos , Ratos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
5.
Eur Respir J ; 64(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39209481

RESUMO

Considerable progress has been made in the genomics of pulmonary arterial hypertension (PAH) since the 6th World Symposium on Pulmonary Hypertension, with the identification of rare variants in several novel genes, as well as common variants that confer a modest increase in PAH risk. Gene and variant curation by an expert panel now provides a robust framework for knowing which genes to test and how to interpret variants in clinical practice. We recommend that genetic testing be offered to specific subgroups of symptomatic patients with PAH, and to children with certain types of group 3 pulmonary hypertension (PH). Testing of asymptomatic family members and the use of genetics in reproductive decision-making require the involvement of genetics experts. Large cohorts of PAH patients with biospecimens now exist and extension to non-group 1 PH has begun. However, these cohorts are largely of European origin; greater diversity will be essential to characterise the full extent of genomic variation contributing to PH risk and treatment responses. Other types of omics data are also being incorporated. Furthermore, to advance gene- and pathway-specific care and targeted therapies, gene-specific registries will be essential to support patients and their families and to lay the foundation for genetically informed clinical trials. This will require international outreach and collaboration between patients/families, clinicians and researchers. Ultimately, harmonisation of patient-derived biospecimens, clinical and omic information, and analytic approaches will advance the field.


Assuntos
Testes Genéticos , Genômica , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/genética , Medicina de Precisão , Predisposição Genética para Doença
6.
J Am Heart Assoc ; 13(15): e035771, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39082428

RESUMO

BACKGROUND: Cerebral small-vessel disease (cSVD) is the leading monogenic cause of stroke. Despite genetic screening in routine diagnosis, many cases remain without a known causative variant. Using a cohort with suspected familial cSVD and whole-genome sequencing, we screened for variants in genes associated with monogenic cSVD and searched for novel variants associated with the disease. METHODS AND RESULTS: Rare variants were identified in whole-genome sequencing data from the NBR (National Institute for Health Research BioResource Rare Disease) study. Pathogenic variants in known monogenic cSVD genes were identified. Gene-based burden tests and family analysis were performed to identify novel variants associated with familial cSVD. A total of 257 suspected cSVD cases (mean ± SD age, 56.2 ± 16.1 years), and 13 086 controls with other nonstroke diseases (5874 [44.9%] men) were studied. A total of 8.9% of the cases carried a variant in known cSVD genes. Excluding these known causes, 23.6% of unrelated subjects with cSVD carried predicted deleterious variants in the Genomics England gene panel, but no association was found with cSVD in burden tests. We identified potential associations with cSVD in noncoding genes, including RP4-568F9.3 (adjusted P = 7.1 × 10-25), RP3-466I7.1 (adjusted P = 8.9 × 10-16), and ZNF209P (adjusted P = 1.0 × 10-15), and matrisomal genes (adjusted P = 5.1 × 10-6), including FAM20C, INHA, LAMC1, and VWA5B2. CONCLUSIONS: Predicted deleterious variants in known cSVD genes were present in 23.6% of unrelated cases with cSVD, but none of the genes were associated with the disease. Rare variants in noncoding and matrisomal genes could potentially contribute to cSVD development. These genes could play a role in tissue development and brain endothelial cell function. However, further studies are needed to confirm their pathophysiological roles.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Predisposição Genética para Doença , Sequenciamento Completo do Genoma , Humanos , Doenças de Pequenos Vasos Cerebrais/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Variação Genética , Linhagem , Estudos de Casos e Controles , Fenótipo , Mutação , Fatores de Risco
7.
Vascul Pharmacol ; 155: 107381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795838

RESUMO

AIMS: Bone morphogenetic protein-9 (BMP9) is critical for bone morphogenetic protein receptor type-2 (BMPR2) signalling in pulmonary vascular endothelial cells. Furthermore, human genetics studies support the central role of disrupted BMPR2 mediated BMP9 signalling in vascular endothelial cells in the initiation of pulmonary arterial hypertension (PAH). In addition, loss-of-function mutations in BMP9 have been identified in PAH patients. BMP9 is considered to play an important role in vascular homeostasis and quiescence. METHODS AND RESULTS: We identified a novel BMP9 target as the class-3 semaphorin, SEMA3G. Although originally identified as playing a role in neuronal development, class-3 semaphorins may have important roles in endothelial function. Here we show that BMP9 transcriptional regulation of SEMA3G occurs via ALK1 and the canonical Smad pathway, requiring both Smad1 and Smad5. Knockdown studies demonstrated redundancy between type-2 receptors in that BMPR2 and ACTR2A were compensatory. Increased SEMA3G expression by BMP9 was found to be regulated by the transcription factor, SOX17. Moreover, we observed that SEMA3G regulates VEGF signalling by inhibiting VEGFR2 phosphorylation and that VEGF, in contrast to BMP9, negatively regulated SEMA3G transcription. Functional endothelial cell assays of VEGF-mediated migration and network formation revealed that BMP9 inhibition of VEGF was abrogated by SEMA3G knockdown. Conversely, treatment with recombinant SEMA3G partially mimicked the inhibitory action of BMP9 in these assays. CONCLUSIONS: This study provides further evidence for the anti-angiogenic role of BMP9 in microvascular endothelial cells and these functions are mediated at least in part via SOX17 and SEMA3G induction.


Assuntos
Movimento Celular , Células Endoteliais , Fator 2 de Diferenciação de Crescimento , Semaforinas , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Humanos , Movimento Celular/efeitos dos fármacos , Semaforinas/metabolismo , Semaforinas/genética , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proteína Smad5/metabolismo , Proteína Smad5/genética , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proteína Smad1/metabolismo , Proteína Smad1/genética , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Células Cultivadas
8.
J Am Heart Assoc ; 13(6): e032256, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456412

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) exhibits phenotypic heterogeneity and variable response to therapy. The metabolome has been implicated in the pathogenesis of PAH, but previous works have lacked power to implicate specific metabolites. Mendelian randomization (MR) is a method for causal inference between exposures and outcomes. METHODS AND RESULTS: Using genome-wide association study summary statistics, we implemented MR analysis to test for potential causal relationships between serum concentration of 575 metabolites and PAH. Five metabolites were causally associated with the risk of PAH after multiple testing correction. Next, we measured serum concentration of candidate metabolites in an independent clinical cohort of 449 patients with PAH to check whether metabolite concentrations are correlated with markers of disease severity. Of the 5 candidates nominated by our MR work, serine was negatively associated and homostachydrine was positively associated with clinical severity of PAH via direct measurement in this independent clinical cohort. Finally we used conditional and orthogonal approaches to explore the biology underlying our lead metabolites. Rare variant burden testing was carried out using whole exome sequencing data from 578 PAH cases and 361 675 controls. Multivariable MR is an extension of MR that uses a single set of instrumental single-nucleotide polymorphisms to measure multiple exposures; multivariable MR is used to determine interdependence between the effects of different exposures on a single outcome. Rare variant analysis demonstrated that loss-of-function mutations within activating transcription factor 4, a transcription factor responsible for upregulation of serine synthesis under conditions of serine starvation, are associated with higher risk for PAH. Homostachydrine is a xenobiotic metabolite that is structurally related to l-proline betaine, which has previously been linked to modulation of inflammation and tissue remodeling in PAH. Our multivariable MR analysis suggests that the effect of l-proline betaine is actually mediated indirectly via homostachydrine. CONCLUSIONS: Our data present a method for study of the metabolome in the context of PAH, and suggests several candidates for further evaluation and translational research.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Seguimentos , Hipertensão Pulmonar Primária Familiar/genética , Serina
9.
Am J Respir Crit Care Med ; 209(12): 1477-1485, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470220

RESUMO

Rationale: Chronic thromboembolic pulmonary hypertension involves the formation and nonresolution of thrombus, dysregulated inflammation, angiogenesis, and the development of a small-vessel vasculopathy. Objectives: We aimed to establish the genetic basis of chronic thromboembolic pulmonary hypertension to gain insight into its pathophysiological contributors. Methods: We conducted a genome-wide association study on 1,907 European cases and 10,363 European control subjects. We coanalyzed our results with existing results from genome-wide association studies on deep vein thrombosis, pulmonary embolism, and idiopathic pulmonary arterial hypertension. Measurements and Main Results: Our primary association study revealed genetic associations at the ABO, FGG, F11, MYH7B, and HLA-DRA loci. Through our coanalysis, we demonstrate further associations with chronic thromboembolic pulmonary hypertension at the F2, TSPAN15, SLC44A2, and F5 loci but find no statistically significant associations shared with idiopathic pulmonary arterial hypertension. Conclusions: Chronic thromboembolic pulmonary hypertension is a partially heritable polygenic disease, with related though distinct genetic associations with pulmonary embolism and deep vein thrombosis.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão Pulmonar , Embolia Pulmonar , Humanos , Embolia Pulmonar/genética , Embolia Pulmonar/complicações , Hipertensão Pulmonar/genética , Masculino , Feminino , Pessoa de Meia-Idade , Doença Crônica , Genômica , Predisposição Genética para Doença , Adulto , Estudos de Casos e Controles , Idoso , Trombose Venosa/genética
10.
Sci Transl Med ; 16(729): eadd2029, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198571

RESUMO

Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , RNA Longo não Codificante , Humanos , Ratos , Animais , Camundongos , Alelos , Hipertensão Pulmonar/genética , Histonas , RNA Longo não Codificante/genética , Roedores , Lisina , Hipertensão Pulmonar Primária Familiar , Hipóxia/genética , Metiltransferases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
11.
Nat Commun ; 15(1): 330, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184627

RESUMO

Pulmonary arterial hypertension (PAH) is characterised by pulmonary vascular remodelling causing premature death from right heart failure. Established DNA variants influence PAH risk, but susceptibility from epigenetic changes is unknown. We addressed this through epigenome-wide association study (EWAS), testing 865,848 CpG sites for association with PAH in 429 individuals with PAH and 1226 controls. Three loci, at Cathepsin Z (CTSZ, cg04917472), Conserved oligomeric Golgi complex 6 (COG6, cg27396197), and Zinc Finger Protein 678 (ZNF678, cg03144189), reached epigenome-wide significance (p < 10-7) and are hypermethylated in PAH, including in individuals with PAH at 1-year follow-up. Of 16 established PAH genes, only cg10976975 in BMP10 shows hypermethylation in PAH. Hypermethylation at CTSZ is associated with decreased blood cathepsin Z mRNA levels. Knockdown of CTSZ expression in human pulmonary artery endothelial cells increases caspase-3/7 activity (p < 10-4). DNA methylation profiles are altered in PAH, exemplified by the pulmonary endothelial function modifier CTSZ, encoding protease cathepsin Z.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Proteínas Morfogenéticas Ósseas , Catepsina Z , Metilação de DNA/genética , Células Endoteliais , Hipertensão Pulmonar Primária Familiar
12.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38076809

RESUMO

Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving the vascular remodeling in PVOD. We show that the administration of MMC in rats mediates the activation of protein kinase R (PKR) and the integrated stress response (ISR), which lead to the release of the endothelial adhesion molecule VE-Cadherin in the complex with Rad51 to the circulation, disruption of endothelial barrier, and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates the depletion of VE-Cadherin, elevation of vascular permeability, and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of BMPR2, underscoring the role of deregulated BMP signal in the development of PVOD.

13.
Genet Med ; 25(11): 100925, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37422716

RESUMO

PURPOSE: Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS: An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS: Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION: We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Adulto , Criança , Humanos , Hipertensão Arterial Pulmonar/genética , Mutação , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Predisposição Genética para Doença , Testes Genéticos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Membrana Transportadoras/genética , Receptores de Activinas Tipo II/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Morfogenéticas Ósseas/genética
14.
Pulm Circ ; 13(1): e12192, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36721385

RESUMO

Similar to other causes of acute respiratory distress syndrome, coronavirus disease 2019 (COVID-19) is characterized by the aberrant expression of vascular injury biomarkers. We present the first report that circulating plasma bone morphogenetic proteins (BMPs), BMP9 and pBMP10, involved in vascular protection, are reduced in hospitalized patients with COVID-19.

15.
J Alzheimers Dis ; 92(1): 295-309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744344

RESUMO

BACKGROUND: Persisting symptoms and increased mortality after SARS-CoV-2 infection has been described in COVID-19 survivors. OBJECTIVE: We examined longer-term mortality in patients with dementia and SARS-CoV-2 infection. METHODS: A retrospective matched case-control study of 165 patients with dementia who survived an acute hospital admission with COVID-19 infection, and 1325 patients with dementia who survived a hospital admission but without SARS-CoV-2 infection. Potential risk factors investigated included socio-demographic factors, clinical features, and results of investigations. Data were fitted using a Cox proportional hazard model. RESULTS: Compared to patients with dementia but without SARS-CoV-2 infection, people with dementia and SARS-CoV-2 infection had a 4.4-fold risk of death (adjusted hazard ratio [aHR] = 4.44, 95% confidence interval [CI] 3.13-6.30) even beyond the acute phase of infection. This excess mortality could be seen up to 125 days after initial recovery but was not elevated beyond this time. Risk factors for COVID-19-associated mortality included prescription of antipsychotics (aHR = 3.06, 95% CI 1.40-6.69) and benzodiazepines (aHR = 3.00, 95% CI 1.28-7.03). Abnormalities on investigation associated with increased mortality included high white cell count (aHR = 1.21, 95% CI 1.04-1.39), higher absolute neutrophil count (aHR = 1.28, 95% CI 1.12-1.46), higher C-reactive protein (aHR = 1.01, 95% CI 1.00-1.02), higher serum sodium (aHR = 1.09, 95% CI 1.01-1.19), and higher ionized calcium (aHR = 1.03, 95% CI 1.00-1.06). The post-acute COVID mortality could be modeled for the first 120 days after recovery with a balanced accuracy of 87.2%. CONCLUSION: We found an increased mortality in patients with dementia beyond the acute phase of illness. We identified several investigation results associated with increased mortality, and increased mortality in patients prescribed antipsychotics or benzodiazepines.


Assuntos
COVID-19 , Demência , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Alta do Paciente , Estudos de Casos e Controles , Fatores de Risco
16.
bioRxiv ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36712057

RESUMO

Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.

17.
Eur Respir J ; 61(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36302552

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Aconselhamento Genético/métodos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Mutação , Hipertensão Pulmonar Primária Familiar/genética , Testes Genéticos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Predisposição Genética para Doença
18.
Am J Respir Crit Care Med ; 207(7): 855-864, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367783

RESUMO

Over the past decade, recognition of the profound impact of the TBX4 (T-box 4) gene, which encodes a member of the evolutionarily conserved family of T-box-containing transcription factors, on respiratory diseases has emerged. The developmental importance of TBX4 is emphasized by the association of TBX4 variants with congenital disorders involving respiratory and skeletal structures; however, the exact role of TBX4 in human development remains incompletely understood. Here, we discuss the developmental, tissue-specific, and pathological TBX4 functions identified through human and animal studies and review the published TBX4 variants resulting in variable disease phenotypes. We also outline future research directions to fill the gaps in our understanding of TBX4 function and of how TBX4 disruption affects development.


Assuntos
Proteínas com Domínio T , Fatores de Transcrição , Animais , Humanos , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Fenótipo
19.
Genet Med Open ; 1(1): 100811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38230350

RESUMO

Purpose: The aim of this study was to identify the monogenic cause of pulmonary arterial hypertension (PAH), a multifactorial and often fatal disease, in 2 unrelated consanguine families. Methods: We performed exome sequencing and validated variant pathogenicity by whole-blood RNA and protein expression analysis in both families. Further RNA sequencing of preserved lung tissue was performed to investigate the consequences on selected genes that are involved in angiogenesis, proliferation, and apoptosis. Results: We identified 2 rare biallelic variants in CAPNS1, encoding the regulatory subunit of calpain. The variants cosegregated with PAH in the families. Both variants lead to loss of function (LoF), which is demonstrated by aberrant splicing resulting in the complete absence of the CAPNS1 protein in affected patients. No other LoF CAPNS1 variant was identified in the genome data of more than 1000 patients with unresolved PAH. Conclusion: The calpain holoenzyme was previously linked to pulmonary vascular development and progression of PAH in patients. We demonstrated that biallelic LoF variants in CAPNS1 can cause idiopathic PAH by the complete absence of CAPNS1 protein. Screening of this gene in patients who are affected by PAH, especially with suspected autosomal recessive inheritance, should be considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA