Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 44: 101928, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489873

RESUMO

Trastuzumab and trastuzumab-based treatments are the standard of care for breast cancer patients who overexpress the human epidermal growth factor receptor 2 (HER2). However, patients often develop resistance to trastuzumab via signaling from alternative growth factor receptors that converge to activate guanine nucleotide exchange factors (GEFs) that in turn activate the Rho GTPases Rac and Cdc42. Since Rac and Cdc42 have been implicated in high tumor grade and therapy resistance, inhibiting the activity of Rac and Cdc42 is a rational strategy to overcome HER2-targeted therapy resistance. Therefore, our group developed MBQ-167, a dual Rac/Cdc42 inhibitor with IC50s of 103 nM and 78 nM for Rac and Cdc42, respectively, which is highly effective in reducing cell and tumor growth and metastasis in breast cancer cell and mouse models. Herein, we created a trastuzumab resistant variant of the SKBR3 HER2 positive breast cancer cell line and show that Rac activation is a central mechanism in trastuzumab resistance. Next, we tested the potential of targeting MBQ-167 to HER2 overexpressing trastuzumab-resistant cell lines in vitro, and show that MBQ-167, but not trastuzumab, reduces cell viability and induces apoptosis. When MBQ-167 was targeted to mammary fatpad tumors established from HER2 overexpressing cells via immunoliposomes functionalized with trastuzumab, MBQ-167 and MBQ-167-loaded liposomes show equal efficacy in reducing the viability of trastuzumab-resistant cells, inhibiting tumor growth in mouse xenografts, and reducing metastasis to lungs and liver. This study demonstrates the efficacy of MBQ-167 as an alternative therapeutic in HER2 overexpressing cancers, delivered either in free form or in liposomes.

2.
ACS Omega ; 8(38): 34377-34387, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779926

RESUMO

Breast cancer is currently the most commonly diagnosed cancer, with 287,850 new cases estimated for 2022 as reported by the American Cancer Society. Therefore, finding an effective treatment for this disease is imperative. Chalcones are α,ß-unsaturated systems found in nature. These compounds have shown a wide array of biological activities, making them popular synthetic targets. Chalcones consist of two aromatic substituents connected by an enone bridge; this arrangement allows for a large number of derivatives. Given the biological relevance of these compounds, novel ferrocene-heterocycle-containing chalcones were synthesized and characterized based on a hybrid drug design approach. These heterocycles included thiophene, pyrimidine, thiazolyl, and indole groups. Fourteen novel heterocyclic ferrocenyl chalcones were synthesized and characterized. Herein, we also report their cytotoxicity against triple-negative breast cancer cell lines MDA-MB-231 and 4T1 and the noncancer lung cell line MRC-5. System 3 ferrocenyl chalcones displayed superior anticancer properties compared to their system 1 analogues. System 3 chalcones bearing five-membered heterocyclic substituents (thiophene, pyrazole, pyrrole, and pyrimidine) were the most active toward the MDA-MB-231 cancer cell line with IC50 values from 6.59 to 12.51 µM. Cytotoxicity of the evaluated compounds in the 4T1 cell line exhibited IC50 values from 13.23 to 213.7 µM. System 3 pyrazole chalcone had consistent toxicity toward both cell lines (IC50 ∼ 13 µM) as well as promising selectivity relative to the noncancer MRC-5 control. Antioxidant activity was also evaluated, where, contrary to anticancer capabilities, system 1 ferrocenyl chalcones were superior to their system 3 analogues. Antioxidant activity comparable to that of ascorbic acid was observed for thiophene-bearing ferrocenyl chalcone with EC50 = 31 µM.

3.
Front Oncol ; 13: 1249649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37752997

RESUMO

Introduction: Glioblastoma (GBM) is a highly aggressive and lethal primary brain tumor. Despite limited treatment options, the overall survival of GBM patients has shown minimal improvement over the past two decades. Factors such as delayed cancer diagnosis, tumor heterogeneity, cancer stem cell survival, infiltrative nature of GBM cells, metabolic reprogramming, and development of therapy resistance contribute to treatment failure. To address these challenges, multitargeted therapies are urgently needed for improved GBM treatment outcomes. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Dysregulated miRNAs have been identified in GBM, playing roles in tumor initiation, progression, and maintenance. Among these miRNAs, miR-92b (miRNA-92b-3p) has been found to be overexpressed in various cancers, including GBM. However, the specific target genes of miR-92b and its therapeutic potential in GBM remain poorly explored. Methods: Samples encompassed T98G, U87, and A172 human GBM cell lines, GBM tumors from Puerto Rican patients, and murine tumors. In-situ hybridization (ISH) assessed miR-92b expression in patient tumors. Transient and stable transfections modified miR-92b levels in GBM cell lines. Real-time PCR gauged gene expressions. Caspase 3 and Trypan Blue assays evaluated apoptosis and viability. Bioinformatics tools (TargetScanHuman 8.0, miRDB, Diana tools, miRWalk) predicted targets. Luciferase assays and Western Blots validated miRNA-target interactions. A subcutaneous GBM Xenograft mouse model received intraperitoneal NC-OMIs or miR92b-OMIs encapsulated in liposomes, three-times per week for two weeks. Analysis utilized GraphPad Prism 8; statistical significance was assessed using 2-tailed, unpaired Student's t-test and two-way ANOVA as required. Results: This study investigated the expression of miR-92b in GBM tumors compared to normal brain tissue samples, revealing a significant upregulation. Inhibition of miR-92b using oligonucleotide microRNA inhibitors (OMIs) suppressed GBM cell growth, migration, and induced apoptosis, while ectopic expression of miR-92b yielded opposite effects. Systemic administration of liposomal-miR92b-OMIs in GBM xenograft mice resulted in reductions in tumor volume and weight. Subsequent experiments identified F-Box and WD Repeat Domain Containing 7 (FBXW7) as a direct target gene of miR-92b in GBM cells. Discussion: FBXW7 acts as a tumor suppressor gene in various cancer types, and analysis of patient data demonstrated that GBM patients with higher FBXW7 mRNA levels had significantly better overall survival compared to those with lower levels. Taken together, our findings suggest that the dysregulated expression of miR-92b in GBM contributes to tumor progression by targeting FBXW7. These results highlight the potential of miR-92b as a therapeutic target for GBM. Further exploration and development of miR-92b-targeted therapies may offer a novel approach to improve treatment outcomes in GBM patients.

5.
BMC Cancer ; 21(1): 652, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074257

RESUMO

BACKGROUND: Even though targeted therapies are available for cancers expressing oncogenic epidermal growth receptor (EGFR) and (or) human EGFR2 (HER2), acquired or intrinsic resistance often confounds therapy success. Common mechanisms of therapy resistance involve activating receptor point mutations and (or) upregulation of signaling downstream of EGFR/HER2 to Akt and (or) mitogen activated protein kinase (MAPK) pathways. However, additional pathways of resistance may exist thus, confounding successful therapy. METHODS: To determine novel mechanisms of EGFR/HER2 therapy resistance in breast cancer, gefitinib or lapatinib resistant variants were created from SKBR3 breast cancer cells. Syngenic therapy sensitive and resistant SKBR3 variants were characterized for mechanisms of resistance by mammosphere assays, viability assays, and western blotting for total and phospho proteins. RESULTS: Gefitinib and lapatinib treatments reduced mammosphere formation in the sensitive cells, but not in the therapy resistant variants, indicating enhanced mesenchymal and cancer stem cell-like characteristics in therapy resistant cells. The therapy resistant variants did not show significant changes in known therapy resistant pathways of AKT and MAPK activities downstream of EGFR/HER2. However, these cells exhibited elevated expression and activation of the small GTPase Rac, which is a pivotal intermediate of GFR signaling in EMT and metastasis. Therefore, the potential of the Rac inhibitors EHop-016 and MBQ-167 to overcome therapy resistance was tested, and found to inhibit viability and induce apoptosis of therapy resistant cells. CONCLUSIONS: Rac inhibition may represent a viable strategy for treatment of EGFR/HER2 targeted therapy resistant breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Mutação com Ganho de Função , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Lapatinib , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Mutação Puntual , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Esferoides Celulares , Regulação para Cima
6.
Int J Nanomedicine ; 15: 2809-2828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368056

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS: Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS: SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION: SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Lipossomos/administração & dosagem , Interferência de RNA , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Glioblastoma/genética , Glioblastoma/patologia , Ouro/química , Humanos , Lipossomos/química , Masculino , Nanopartículas Metálicas/química , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ácidos Nucleicos/química , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/farmacocinética , Proteínas do Envelope Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Am J Transl Res ; 12(4): 1275-1292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32355541

RESUMO

Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop a platinum-resistant disease with a poor overall prognosis. The molecular events leading to the cisplatin resistance of ovarian cancer cells are not fully understood. Here, we performed a proteomic analysis to identify protein candidates deregulated in a cisplatin-resistant ovarian cancer cell line (A2780CP20) in comparison to their sensitive counterpart (A2780). Forty-eight proteins were differentially abundant in A2780CP20, as compared with A2780, cells. Enolase-1 (ENO1) was significantly decreased in cisplatin-resistant ovarian cancer cells. Western blots and RT-PCR confirmed our findings. Ectopic ENO1 expression increased the sensitivity of ovarian cancer cells to cisplatin treatment. In contrast, small-interfering (siRNA)-based ENO1 silencing in A2780 cells reduced the sensitivity of these cells to cisplatin treatment. Whereas glucose consumption was lower, intracellular levels were higher in cisplatin-resistant ovarian cancer cells as compared with their cisplatin-sensitive counterparts. Senescence-associated ß-galactosidase (ß-Gal) levels were higher in cisplatin-resistant ovarian cancer cells as compared with cisplatin-sensitive ovarian cancer cells. ß-Gal levels were decreased in ENO1 overexpressed clones. Protein levels of the cell cycle regulators and senescence markers p21 and p53 showed opposite expression patterns in cisplatin-resistant compared with cisplatin sensitive cells. Our studies suggest that decreased expression of ENO1 promotes glucose accumulation, induces senescence, and leads to cisplatin resistance of ovarian cancer cells.

8.
Cancers (Basel) ; 10(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322013

RESUMO

Glioblastoma (GBM) is the most common and aggressive of all brain tumors, with a median survival of only 14 months after initial diagnosis. Novel therapeutic approaches are an unmet need for GBM treatment. MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. Several dysregulated miRNAs have been identified in all cancer types including GBM. In this study, we aimed to uncover the role of miR-143 in GBM cell lines, patient samples, and mouse models. Quantitative real-time RT-PCR of RNA extracted from formalin-fixed paraffin-embedded (FFPE) samples showed that the relative expression of miR-143 was higher in GBM patients compared to control individuals. Transient transfection of GBM cells with a miR-143 oligonucleotide inhibitor (miR-143-inh) resulted in reduced cell proliferation, increased apoptosis, and cell cycle arrest. SLC30A8, a glucose metabolism-related protein, was identified as a direct target of miR-143 in GBM cells. Moreover, multiple injections of GBM tumor-bearing mice with a miR-143-inh-liposomal formulation significantly reduced tumor growth compared to control mice. The reduced in vitro cell growth and in vivo tumor growth following miRNA-143 inhibition suggests that miR-143 is a potential therapeutic target for GBM therapy.

9.
Life Sci ; 188: 26-36, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28864225

RESUMO

Glioblastoma multiforme (GBM) is the most common and deadliest type of primary brain tumor with a prognosis of 14months after diagnosis. Current treatment for GBM patients includes "total" tumor resection, temozolomide-based chemotherapy, radiotherapy or a combination of these options. Although, several targeted therapies, gene therapy, and immunotherapy are currently in the clinic and/or in clinical trials, the overall survival of GBM patients has hardly improved over the last two decades. Therefore, novel multitarget modalities are urgently needed. Recently, RNA interference (RNAi) has emerged as a novel strategy for the treatment of most cancers, including GBM. RNAi-based therapies consist of using small RNA oligonucleotides to regulate protein expression at the post-transcriptional level. Despite the therapeutic potential of RNAi molecules, systemic limitations including short circulatory stability and low release into the tumor tissue have halted their progress to the clinic. The effective delivery of RNAi molecules through the blood-brain barrier (BBB) represents an additional challenge. This review focuses on connecting the translational process of RNAi-based therapies from in vitro evidence to pre-clinical studies. We delineate the effect of RNAi in GBM cell lines, describe their effectiveness in glioma mouse models, and compare the proposed drug carriers for the effective transport of RNAi molecules through the BBB to reach the tumor in the brain. Furthermore, we summarize the most important obstacles to overcome before RNAi-based therapy becomes a reality for GBM treatment.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Terapia de Alvo Molecular/métodos , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Pesquisa Translacional Biomédica , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias Encefálicas/genética , Ensaios Clínicos como Assunto , Portadores de Fármacos , Glioblastoma/genética , Humanos , RNA Interferente Pequeno/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA