Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6677): 1411-1416, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38127762

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) contain ≲20% of the carbon in the interstellar medium. They are potentially produced in circumstellar environments (at temperatures ≳1000 kelvin), by reactions within cold (~10 kelvin) interstellar clouds, or by processing of carbon-rich dust grains. We report isotopic properties of PAHs extracted from samples of the asteroid Ryugu and the meteorite Murchison. The doubly-13C substituted compositions (Δ2×13C values) of the PAHs naphthalene, fluoranthene, and pyrene are 9 to 51‰ higher than values expected for a stochastic distribution of isotopes. The Δ2×13C values are higher than expected if the PAHs formed in a circumstellar environment, but consistent with formation in the interstellar medium. By contrast, the PAHs phenanthrene and anthracene in Ryugu samples have Δ2×13C values consistent with formation by higher-temperature reactions.

2.
Science ; 379(6634): eabn9033, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821691

RESUMO

The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a variety of molecules containing the atoms CHNOS, formed by methylation, hydration, hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, which had properties consistent with an abiotic origin. These compounds likely arose from an aqueous reaction on Ryugu's parent body and are similar to the organics in Ivuna-type meteorites. These molecules can survive on the surfaces of asteroids and be transported throughout the Solar System.

3.
Life (Basel) ; 12(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36143402

RESUMO

The stable isotope composition of soluble and insoluble organic compounds in carbonaceous chondrites can be used to determine the provenance of organic molecules in space. Deuterium enrichment in meteoritic organics could be a residual signal of synthetic reactions occurring in the cold interstellar medium or an indicator of hydrothermal parent-body reactions. δD values have been measured in grains and bulk samples for a wide range of meteorites; however, these reservoirs are highly variable and may have experienced fractionation during thermal and/or aqueous alteration. Among the plethora of organic compounds in meteorites are polycyclic aromatic hydrocarbons (PAHs), which are stable and abundant in carbonaceous chondrites, and their δD ratio may preserve evidence about their formation environment as well as the influence of parent-body processes. This study tests hypotheses about the potential links between PAHs-deuteration concentrations and their formation conditions by examining the δD ratio of PAHs in three CM carbonaceous chondrites representing an aqueous alteration gradient. We use deuterium enrichments in soluble 2-5-ring PAHs as an indicator of either photon-driven deuteration due to unimolecular photodissociation in warm regions of space, gas-phase ion-molecule reactions in cold interstellar regions of space, or UV photolysis in ices. We also test hypothesized reaction pathways during parent-body processing that differ between partially and fully aromatized PAHs. New methodological approaches were developed to extract small, volatile PAHs without fractionation. Our results suggest that meteoritic PAHs could have formed through reactions in cold regions, with possible overprinting of deuterium enrichment during aqueous parent-body alteration, but the data could not rule out PAH alteration in icy mantles as well.

4.
Astrobiology ; 22(S1): S186-S216, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653292

RESUMO

The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.


Assuntos
Marte , Voo Espacial , Teorema de Bayes , Meio Ambiente Extraterreno , Pesquisa Espacial
5.
Proc Natl Acad Sci U S A ; 119(27): e2201139119, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759667

RESUMO

The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO2. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 µg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8‰) representing a minimum of 431 µg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 µg C/g was evolved as CO2 and CO (with estimated δ13C = -32.9‰ to -10.1‰ for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.

6.
Astrobiology ; 22(6): 637-640, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35196462

RESUMO

"Fungi on Mars!": a popular news heading that piques public interest and makes scientists' blood boil. While such a statement is laden with misinformation and light on evidence, the search for past and present extraterrestrial life is an ongoing scientific effort. Moreover, it is one that is increasingly gaining momentum with the recent collection of martian rock cores from Jezero Crater by NASA's Perseverance rover. Despite the increasingly sophisticated approaches guiding the search for microbial life on other planets, fungi remain relatively underexplored compared to their bacterial counterparts, highlighting a gap between the astrobiological and fungal research communities. Through a meeting in April 2021, the CIFAR Earth 4D and Fungal Kingdom research programs worked to bridge this divide by uniting experts in each field. CIFAR is a Canadian-based global research organization that convenes researchers across disciplines to address important questions facing science and humanity. The CIFAR Earth 4D: Subsurface Science & Exploration and Fungal Kingdom: Threats & Opportunities research programs were launched by CIFAR in July 2019, each made up of approximately two dozen international researchers who are experts in their fields. The Earth 4D program, led by co-directors John Mustard (Brown University, USA) and Barbara Sherwood Lollar (University of Toronto, Canada), aims to understand the complex chemical, physical, and biological interactions that occur within and between Earth's surface and subsurface to explore questions on the evolution of planets and life. The Fungal Kingdom program, led by co-directors Leah Cowen (University of Toronto, Canada) and Joseph Heitman (Duke University, USA), seeks to tackle the most pressing threats fungi pose to human health, agriculture, and biodiversity and to harness their extraordinary potential. The programs met to explore areas for synergy within four major themes: (1) the origins of life; (2) the evolution and diversification of life; (3) life in diverse and extreme environments; and (4) extinction: lessons learned and threats. This report covers the research discussed during the meeting across these four themes.


Assuntos
Meio Ambiente Extraterreno , Marte , Canadá , Planeta Terra , Exobiologia , Humanos , Planetas
7.
Life (Basel) ; 11(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072344

RESUMO

In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent "grayness" blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries.

8.
Astrobiology ; 18(7): 915-922, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29634318

RESUMO

Most strategies for life detection rely upon finding features known to be associated with terran life, such as particular classes of molecules. But life may be vastly different on other planets and moons, particularly as we expand our efforts to explore ocean worlds like Europa and Enceladus. We propose a new concept for life detection that harnesses the power of DNA sequencing to yield intricate informatics fingerprints, even for life that is not nucleic acid-based. The concept is based on the fact that folded nucleic acid structures (aptamers) have been shown to be capable of binding a wide variety of compounds, whether inorganic, organic, or polymeric, and irrespective of being from a biotic or abiotic source. Each nucleic acid sequence can be thought of as a code, and a combination of codes as a "fingerprint." Over multiple analytes, the "fingerprint" of a non-terran sample can be analyzed by chemometric protocols to provide a classifier of molecular patterns and complexity. Ultimately the chemometric fingerprints of living systems, which may differ significantly from nonliving systems, could provide an empirical, agnostic means of detecting life. Because nucleic acids are exponentially amplified by the polymerase chain reaction, even very small input signals could be translated into a robust readable output. The derived sequences could be identified by a small, portable sequencing device or by capture and optical imaging on a DNA microarray. Without presupposing any particular molecular framework, this agnostic approach to life detection could be used from Mars to the far reaches of the Solar System, all within the framework of an instrument drawing little heat and power. Key Words: Agnostic biosignatures-Astrobiology-Chemometrics-DNA sequencing-Life detection-Proximity ligation assay. Astrobiology 18, 915-922.


Assuntos
Impressões Digitais de DNA/métodos , Exobiologia/métodos , Vida , Planetas , Análise de Sequência de DNA/métodos , DNA/análise , DNA/química , Meio Ambiente Extraterreno/química
9.
Astrobiology ; 17(4): 363-400, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28177270

RESUMO

This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Planeta Terra , Ferro/química , Água/química
10.
Sci Rep ; 3: 1597, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23579869

RESUMO

The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial. We report a series of high-resolution AMS (14)C dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel between AD 658-696. This strongly supports the Goodman-Martínez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization.


Assuntos
Cronologia como Assunto , Indígenas Centro-Americanos/história , Datação Radiométrica/métodos , Madeira/análise , América Central , Europa (Continente) , História Medieval , Humanos , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA