Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Analyst ; 148(23): 5926-5934, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37850419

RESUMO

Angiotensin and kinin metabolic pathways are reported to be altered by many diseases, including COVID-19. Monitoring levels of these peptide metabolites is important for understanding mechanisms of disease processes. In this paper, we report dimethyl labeling of amines in peptides by addition of formaldehyde to samples and deutero-formaldehyde to internal standards to generate nearly identical isotopic standards with 4 m/z units larger per amine group than the corresponding analyte. We apply this approach to rapid, multiplexed, absolute LC-MS/MS quantitation of renin angiotensin system (RAS) and kallikrein-kinin system (KKS) peptides in human blood serum. Limits of detection (LODs) were obtained in the low pg mL-1 range with 3 orders of magnitude dynamic ranges, appropriate for determinations of normal and elevated levels of the target peptides in blood serum and plasma. Accuracy is within ±15% at concentrations above the limit of quantitation, as validated by spike-recovery in serum samples. Applicability was demonstrated by measuring RAS and KKS peptides in serum from COVID-19 patients, but is extendable to any class of peptides or other small molecules bearing reactive -NH2 groups.


Assuntos
COVID-19 , Sistema Renina-Angiotensina , Humanos , Sistema Calicreína-Cinina , Cromatografia Líquida , Soro , COVID-19/diagnóstico , Espectrometria de Massas em Tandem , Peptídeos , Formaldeído , Isótopos
2.
Adv Mater Technol ; : 2200905, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36714215

RESUMO

The necessity for multiple injections and cold-chain storage has contributed to suboptimal vaccine utilization, especially in pandemic situations. Thermally-stable and single-administration vaccines hold a great potential to revolutionize the global immunization process. Here, a new approach to thermally stabilize protein-based antigens is presented and a new high-throughput antigen-loading process is devised to create a single-administration, pulsatile-release microneedle (MN) patch which can deliver a recombinant SARS-CoV-2 S1-RBD protein-a model for the COVID-19 vaccine. Nearly 100% of the protein antigen could be stabilized at temperatures up to 100 °C for at least 1 h and at an average human body temperature (37 °C) for up to 4 months. Arrays of the stabilized S1-RBD formulations can be loaded into the MN shells via a single-alignment assembly step. The fabricated MNs are administered at a single time into the skin of rats and induce antibody response which could neutralize authentic SARS-CoV-2 viruses, providing similar immunogenic effect to that induced by multiple bolus injections of the same antigen stored in conventional cold-chain conditions. The MN system presented herein could offer the key solution to global immunization campaigns by avoiding low patient compliance, the requirement for cold-chain storage, and the need for multiple booster injections.

3.
J Am Soc Mass Spectrom ; 28(8): 1531-1539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28409445

RESUMO

The detailed chemical characterization of homemade explosives (HMEs) and other chemicals that can mimic or mask the presence of explosives is important for understanding and improving the performance of commercial instrumentation used for explosive detection. To that end, an atmospheric-pressure drift tube ion mobility spectrometry (IMS) instrument has been successfully coupled to a commercial tandem mass spectrometry (MS) system. The tandem MS system is comprised of a linear ion trap and a high resolution Orbitrap analyzer. This IMS-MS combination allows extensive characterization of threat chemical compounds, including HMEs, and complex real-world background chemicals that can interfere with detection. Here, the composition of ion species originating from a specific HME, erythritol tetranitrate, has been elucidated using accurate mass measurements, isotopic ratios, and tandem MS. Gated IMS-MS and high-resolution MS have been used to identify minor impurities that can be indicative of the HME source and/or synthesis route. Comparison between data obtained on the IMS/MS system and on commercial stand-alone IMS instruments used as explosive trace detectors (ETDs) has also been performed. Such analysis allows better signature assignments of threat compounds, modified detection algorithms, and improved overall ETD performance. Graphical Abstract ᅟ.

4.
J Am Soc Mass Spectrom ; 24(6): 917-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23532782

RESUMO

The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n](y+) complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n](2+) complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.


Assuntos
Substâncias para a Guerra Química/análise , Complexos de Coordenação/química , Espectrometria de Massas/métodos , Níquel/química , Substâncias para a Guerra Química/química , Limite de Detecção , Membranas Artificiais , Gás de Mostarda/análise , Gás de Mostarda/química , Organofosfatos/análise , Organofosfatos/química , Sarina/análise , Sarina/química
5.
J Am Soc Mass Spectrom ; 22(4): 683-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21472607

RESUMO

A multiplexed method for performing MS/MS on multiple ions simultaneously in a miniature rectilinear ion trap (RIT) mass spectrometer has been developed. This method uses an ion encoding procedure that relies on the mass bias that exists when ions are externally injected into an RIT operated with only a single phase rf applied to one pair of electrodes. The ion injection profile under such conditions ions is Gaussian-like over a wide range of rf amplitudes, or low mass cutoff (LMCO) values, during ion accumulation. We show that this distribution is related to ion m/z and is likely caused by ions having an optimal range of pseudo-potential well depths for efficient trapping. Based on this observation, precursor ion intensity changes between two different injection LMCO values can be predicted, and these ion intensity changes are found to be carried through to their corresponding product ions, enabling multiplexed MS/MS spectra to be deconvoluted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA