Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38573566

RESUMO

PURPOSE: Cancer confirmation in the operating room (OR) is crucial to improve local control in cancer therapies. Histopathological analysis remains the gold standard, but there is a lack of real-time in situ cancer confirmation to support margin confirmation or remnant tissue. Raman spectroscopy (RS), as a label-free optical technique, has proven its power in cancer detection and, when integrated into a robotic assistance system, can positively impact the efficiency of procedures and the quality of life of patients, avoiding potential recurrence. METHODS: A workflow is proposed where a 6-DOF robotic system (optical camera + MECA500 robotic arm) assists the characterization of fresh tissue samples using RS. Three calibration methods are compared for the robot, and the temporal efficiency is compared with standard hand-held analysis. For healthy/cancerous tissue discrimination, a 1D-convolutional neural network is proposed and tested on three ex vivo datasets (brain, breast, and prostate) containing processed RS and histopathology ground truth. RESULTS: The robot achieves a minimum error of 0.20 mm (0.12) on a set of 30 test landmarks and demonstrates significant time reduction in 4 of the 5 proposed tasks. The proposed classification model can identify brain, breast, and prostate cancer with an accuracy of 0.83 (0.02), 0.93 (0.01), and 0.71 (0.01), respectively. CONCLUSION: Automated RS analysis with deep learning demonstrates promising classification performance compared to commonly used support vector machines. Robotic assistance in tissue characterization can contribute to highly accurate, rapid, and robust biopsy analysis in the OR. These two elements are an important step toward real-time cancer confirmation using RS and OR integration.

2.
J Biomed Opt ; 27(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045491

RESUMO

SIGNIFICANCE: The diagnosis of prostate cancer (PCa) and focal treatment by brachytherapy are limited by the lack of precise intraoperative information to target tumors during biopsy collection and radiation seed placement. Image-guidance techniques could improve the safety and diagnostic yield of biopsy collection as well as increase the efficacy of radiotherapy. AIM: To estimate the accuracy of PCa detection using in situ Raman spectroscopy (RS) in a pilot in-human clinical study and assess biochemical differences between in vivo and ex vivo measurements. APPROACH: A new miniature RS fiber-optics system equipped with an electromagnetic (EM) tracker was guided by trans-rectal ultrasound-guided imaging, fused with preoperative magnetic resonance imaging to acquire 49 spectra in situ (in vivo) from 18 PCa patients. In addition, 179 spectra were acquired ex vivo in fresh prostate samples from 14 patients who underwent radical prostatectomy. Two machine-learning models were trained to discriminate cancer from normal prostate tissue from both in situ and ex vivo datasets. RESULTS: A support vector machine (SVM) model was trained on the in situ dataset and its performance was evaluated using leave-one-patient-out cross validation from 28 normal prostate measurements and 21 in-tumor measurements. The model performed at 86% sensitivity and 72% specificity. Similarly, an SVM model was trained with the ex vivo dataset from 152 normal prostate measurements and 27 tumor measurements showing reduced cancer detection performance mostly attributable to spatial registration inaccuracies between probe measurements and histology assessment. A qualitative comparison between in situ and ex vivo measurements demonstrated a one-to-one correspondence and similar ratios between the main Raman bands (e.g., amide I-II bands, phenylalanine). CONCLUSIONS: PCa detection can be achieved using RS and machine learning models for image-guidance applications using in situ measurements during prostate biopsy procedures.


Assuntos
Próstata , Neoplasias da Próstata , Biópsia , Humanos , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Próstata/diagnóstico por imagem , Próstata/patologia , Próstata/cirurgia , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Análise Espectral Raman/métodos
3.
Radiother Oncol ; 166: 154-161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861267

RESUMO

BACKGROUND AND PURPOSE: Advances in high-dose-rate brachytherapy to treat prostate cancer hinge on improved accuracy in navigation and targeting while optimizing a streamlined workflow. Multimodal image registration and electromagnetic (EM) tracking are two technologies integrated into a prototype system in the early phase of clinical evaluation. We aim to report on the system's accuracy and workflow performance in support of tumor-targeted procedures. MATERIALS AND METHODS: In a prospective study, we evaluated the system in 43 consecutive procedures after clinical deployment. We measured workflow efficiency and EM catheter reconstruction accuracy. We also evaluated the system's MRI-TRUS registration accuracy with/without deformation, and with/without y-axis rotation for urethral alignment at initialization. RESULTS: The cohort included 32 focal brachytherapy and 11 integrated boost whole-gland implants. Mean procedure time excluding dose delivery was 38 min (range: 21-83) for focal, and 56 min (range: 38-89) for whole-gland implants; stable over time. EM catheter reconstructions achieved a mean difference between computed and measured free-length of 0.8 mm (SD 0.8, no corrections performed), and mean axial manual corrections 1.3 mm (SD 0.7). EM also enabled the clinical use of a non or partially visible catheter in 21% of procedures. Registration accuracy improved with y-axis rotation for urethral alignment at initialization and with the elastic registration (mTRE 3.42 mm, SD 1.49). CONCLUSION: The system supported tumor-targeting and was implemented with no demonstrable learning curve. EM reconstruction errors were small, correctable, and improved with calibration and control of external distortion sources; increasing confidence in the use of partially visible catheters. Image registration errors remained despite rotational alignment and deformation, and should be carefully considered.


Assuntos
Braquiterapia , Neoplasias da Próstata , Braquiterapia/métodos , Humanos , Masculino , Imagens de Fantasmas , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
4.
Int J Comput Assist Radiol Surg ; 15(5): 867-876, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32227280

RESUMO

PURPOSE: Transrectal ultrasound (TRUS) image guidance is the standard of care for diagnostic and therapeutic interventions in prostate cancer (PCa) patients, but can lead to high false-negative rates, compromising downstream effectiveness of therapeutic choices. A promising approach to improve in-situ detection of PCa lies in using the optical properties of the tissue to discern cancer from healthy tissue. In this work, we present the first in-situ image-guided navigation system for a spatially tracked Raman spectroscopy probe integrated in a PCa workflow, capturing the optical tissue fingerprint. The probe is guided with fused TRUS/MR imaging and tested with both tissue-simulating phantoms and ex-vivo prostates. The workflow was designed to be integrated the clinical workflow for trans-perineal prostate biopsies, as well as for high-dose rate (HDR) brachytherapy. METHODS: The proposed system developed in 3D Slicer includes an electromagnetically tracked Raman spectroscopy probe, along with tracked TRUS imaging automatically registered to diagnostic MRI. The proposed system is tested on both custom gelatin tissue-simulating optical phantoms and biological tissue phantoms. A random-forest classifier was then trained on optical spectrums from ex-vivo prostates following prostatectomy using our optical probe. Preliminary in-human results are presented with the Raman spectroscopy instrument to detect malignant tissue in-situ with histopathology confirmation. RESULTS: In 5 synthetic gelatin and biological tissue phantoms, we demonstrate the ability of the image-guided Raman system by detecting over 95% of lesions, based on biopsy samples. The included lesion volumes ranged from 0.1 to 0.61 cc. We showed the compatibility of our workflow with the current HDR brachytherapy setup. In ex-vivo prostates of PCa patients, the system showed a 81% detection accuracy in high grade lesions. CONCLUSION: Pre-clinical experiments demonstrated promising results for in-situ confirmation of lesion locations in prostates using Raman spectroscopy, both in phantoms and human ex-vivo prostate tissue, which is required for integration in HDR brachytherapy procedures.


Assuntos
Prostatectomia/métodos , Neoplasias da Próstata/cirurgia , Biópsia , Humanos , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Análise Espectral Raman , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA