Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 143(2): 385-97, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25398624

RESUMO

Although tungsten carbide-cobalt (WC-Co) nanoparticles (NPs) have been widely used because of their robustness, their risk to human health remains poorly studied, despite the International Agency for Research on Cancer (IARC) classifying them as "probably carcinogenic" for humans (Group 2A) in 2006. Our current study aimed at defining the cytotoxicity and genotoxicity of one set of commercially available 60-nm diameter WC-Co NPs on three human cell lines representative of potential target organs: A549 (lung), Hep3B (liver), and Caki-1 (kidney). The cytotoxicity of WC-Co NPs was determined by evaluating cell impedance (xCELLigence), cell survival/death, and cell cycle checkpoints. Flow cytometry was used to not only evaluate cell cycle checkpoints, but to also estimate reactive oxygen species (ROS) generation. In addition, γ-H2Ax foci detection (confocal microscopy), considered to be the most sensitive technique for studying DNA double-strand breaks, was utilized to evaluate genotoxicity. As a final part of this study, we assessed the cellular incorporation of WC-Co NPs, first byflow cytometry (side scatter), and then by confocal microscopy (light reflection) to ensure that the NPs had entered cells. Overall, our current findings demonstrate that WC-Co NPs induce cell mortality, DNA double-strand breaks, and cell cycle arrest in human renal (Caki-1) and liver (Hep3B) cell lines, but do not induce significant cytotoxic effects in A549 lung cells. Interestingly, although WC-Co NPs effectively entered the cells in all 3 lines tested, ROS were detected in Caki-1 and Hep3B, but not in A549. This may explain the great differences in the cytotoxic and genotoxic effects we observed between these lines.


Assuntos
Cobalto/toxicidade , Dano ao DNA , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Compostos de Tungstênio/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Microscopia Confocal , Especificidade de Órgãos
2.
Nanotoxicology ; 8 Suppl 1: 46-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24266793

RESUMO

Although nanodiamonds (NDs) appear as one of the most promising nanocarbon materials available so far for biomedical applications, their risk for human health remains unknown. Our work was aimed at defining the cytotoxicity and genotoxicity of two sets of commercial carboxylated NDs with diameters below 20 and 100 nm, on six human cell lines chosen as representative of potential target organs: HepG2 and Hep3B (liver), Caki-1 and Hek-293 (kidney), HT29 (intestine) and A549 (lung). Cytotoxicity of NDs was assessed by measuring cell impedance (xCELLigence® system) and cell survival/death by flow cytometry while genotoxicity was assessed by γ-H2Ax foci detection, which is considered the most sensitive technique for studying DNA double-strand breaks. To validate and check the sensitivity of the techniques, aminated polystyrene nanobeads were used as positive control in all assays. Cell incorporation of NDs was also studied by flow cytometry and luminescent N-V center photoluminescence (confirmed by Raman microscopy), to ensure that nanoparticles entered the cells. Overall, we show that NDs effectively entered the cells but NDs do not induce any significant cytotoxic or genotoxic effects on the six cell lines up to an exposure dose of 250 µg/mL. Taken together these results strongly support the huge potential of NDs for human nanomedicine but also their potential as negative control in nanotoxicology studies.


Assuntos
Ácidos Carboxílicos/química , Intestinos/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanodiamantes , Linhagem Celular , Citometria de Fluxo , Humanos , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA