Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 42(2): 265-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37142704

RESUMO

Antibiotic treatments have detrimental effects on the microbiome and lead to antibiotic resistance. To develop a phage therapy against a diverse range of clinically relevant Escherichia coli, we screened a library of 162 wild-type (WT) phages, identifying eight phages with broad coverage of E. coli, complementary binding to bacterial surface receptors, and the capability to stably carry inserted cargo. Selected phages were engineered with tail fibers and CRISPR-Cas machinery to specifically target E. coli. We show that engineered phages target bacteria in biofilms, reduce the emergence of phage-tolerant E. coli and out-compete their ancestral WT phages in coculture experiments. A combination of the four most complementary bacteriophages, called SNIPR001, is well tolerated in both mouse models and minipigs and reduces E. coli load in the mouse gut better than its constituent components separately. SNIPR001 is in clinical development to selectively kill E. coli, which may cause fatal infections in hematological cancer patients.


Assuntos
Bacteriófagos , Escherichia coli , Animais , Humanos , Camundongos , Suínos , Escherichia coli/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Porco Miniatura , Antibacterianos
2.
Biomark Med ; 8(5): 713-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25123039

RESUMO

The identification and clinical demonstration of efficacy and safety of osteo- and chondro-protective drugs are met with certain difficulties. During the last few decades, the pharmaceutical industry has, in the field of rheumatology, experienced disappointments associated with the development of disease modification. Today, the vast amount of patients suffering from serious, chronic joint diseases can only be offered treatments aimed at improving symptoms, such as pain and acute inflammation, and are not aimed at protecting the joint tissue. This huge, unmet medical need has been the driver behind the development of improved analytical techniques allowing better and more efficient clinical trial design, implementation and analysis. With this review, we aim to provide a brief and general overview of biochemical markers of joint tissue, with special focus on neoepitopes. Furthermore, we highlight recent studies applying biochemical markers in joint degenerative diseases. These disorders, including osteoarthritis, rheumatoid arthritis and spondyloarthropathies, are the most predominant disorders in Europe and the USA, and have enormous socioeconomical impact.


Assuntos
Cartilagem/metabolismo , Articulações/metabolismo , Animais , Biomarcadores/metabolismo , Descoberta de Drogas , Saúde , Humanos , Artropatias/tratamento farmacológico , Artropatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA