Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLOS Digit Health ; 3(4): e0000327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652722

RESUMO

As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 15(4): 1037-1051, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29993641

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are approximately 22-nucleotide long regulatory RNA that mediate RNA interference by binding to cognate mRNA target regions. Here, we present a distributed kernel SVM-based binary classification scheme to predict miRNA targets. It captures the spatial profile of miRNA-mRNA interactions via smooth B-spline curves. This is accomplished separately for various input features, such as thermodynamic and sequence-based features. Further, we use a principled approach to uniformly model both canonical and non-canonical seed matches, using a novel seed enrichment metric. Finally, we verify our miRNA-mRNA pairings using an Elastic Net-based regression model on TCGA expression data for four cancer types to estimate the miRNAs that together regulate any given mRNA. RESULTS: We present a suite of algorithms for miRNA target prediction, under the banner Avishkar, with superior prediction performance over the competition. Specifically, our final kernel SVM model, with an Apache Spark backend, achieves an average true positive rate (TPR) of more than 75 percent, when keeping the false positive rate of 20 percent, for non-canonical human miRNA target sites. This is an improvement of over 150 percent in the TPR for non-canonical sites, over the best-in-class algorithm. We are able to achieve such superior performance by representing the thermodynamic and sequence profiles of miRNA-mRNA interaction as curves, devising a novel seed enrichment metric, and learning an ensemble of miRNA family-specific kernel SVM classifiers. We provide an easy-to-use system for large-scale interactive analysis and prediction of miRNA targets. All operations in our system, namely candidate set generation, feature generation and transformation, training, prediction, and computing performance metrics are fully distributed and are scalable. CONCLUSIONS: We have developed an efficient SVM-based model for miRNA target prediction using recent CLIP-seq data, demonstrating superior performance, evaluated using ROC curves for different species (human or mouse), or different target types (canonical or non-canonical). We analyzed the agreement between the target pairings using CLIP-seq data and using expression data from four cancer types. To the best of our knowledge, we provide the first distributed framework for miRNA target prediction based on Apache Hadoop and Spark. AVAILABILITY: All source code and sample data are publicly available at https://bitbucket.org/cellsandmachines/avishkar. Our scalable implementation of kernel SVM using Apache Spark, which can be used to solve large-scale non-linear binary classification problems, is available at https://bitbucket.org/cellsandmachines/kernelsvmspark.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Algoritmos , Bases de Dados Genéticas , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , Curva ROC , Reprodutibilidade dos Testes , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Máquina de Vetores de Suporte
3.
J Chem Phys ; 132(17): 174704, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20459180

RESUMO

We report our study of a silica-water interface using reactive molecular dynamics. This first-of-its-kind simulation achieves length and time scales required to investigate the detailed chemistry of the system. Our molecular dynamics approach is based on the ReaxFF force field of van Duin et al. [J. Phys. Chem. A 107, 3803 (2003)]. The specific ReaxFF implementation (SERIALREAX) and force fields are first validated on structural properties of pure silica and water systems. Chemical reactions between reactive water and dangling bonds on a freshly cut silica surface are analyzed by studying changing chemical composition at the interface. In our simulations, reactions involving silanol groups reach chemical equilibrium in approximately 250 ps. It is observed that water molecules penetrate a silica film through a proton-transfer process we call "hydrogen hopping," which is similar to the Grotthuss mechanism. In this process, hydrogen atoms pass through the film by associating and dissociating with oxygen atoms within bulk silica, as opposed to diffusion of intact water molecules. The effective diffusion constant for this process, taken to be that of hydrogen atoms within silica, is calculated to be 1.68 x 10(-6) cm(2)/s. Polarization of water molecules in proximity of the silica surface is also observed. The subsequent alignment of dipoles leads to an electric potential difference of approximately 10.5 V between the silica slab and water.

4.
Artigo em Inglês | MEDLINE | ID: mdl-18301721

RESUMO

Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA) that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, they are used for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the 5' untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unknown alternative splicing mechanisms or structural scaffolds. Second, using data from the FBI's combined DNA index system (CODIS), we demonstrate that our approach is particularly well suited for the problem of discovering short tandem repeats-an application of importance in genetic profiling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA