Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Stem Cells Transl Med ; 13(1): 14-29, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38071447

RESUMO

Perinatal derivatives have been proposed as adjunct therapeutic strategies or innovative treatments. Undoubtedly, perinatal derivatives can offer the opportunity and source material to isolate multipotent stem cells, but both maternal- and fetal-derived tissues can be processed and transformed into engineered tissues or advanced biomedical devices, whose potential remains to be fully elucidated. Promising preclinical and clinical results collected so far clearly foresee an escalation of such novel treatments. Market forecasts predict exponential growth in such advanced medicinal products during the next decade, with a pragmatic innovation for medicine into a more advanced biomedical version, enlarging the portfolio for treating a wide range of congenital and acute conditions. However, all these promising and fascinating therapeutic possibilities cannot gain a solid and recognized role in established medical practice without rigid and harmonized manufacturing strategies. The implementation of strategies according to guidelines and directives compiled by Regulatory Agencies, in conformity to (European) Pharmacopoeia and for Good Manufacturing Practice -conforming production of such products, represent critical steps required to translate perinatal technologies into effective therapeutic approaches. During the past 5 years, a panel of European experts and developers, gathered under the umbrella of the COST Sprint Action, supported by the European Cooperation in Science and Technology action, had the opportunity to revise and summarize experience and recommendations for a fruitful and proficient generation of perinatal biomedical products. In order to facilitate the creation and potential commercialization of perinatal bioengineered and advanced pharmaceutical products and technologies, such a collection of data and recommendations is described and discussed here.


Assuntos
Medicina , Engenharia Tecidual , Gravidez , Feminino , Humanos
2.
J Tissue Eng ; 14: 20417314231219813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143931

RESUMO

Congenital and chronic liver diseases have a substantial health burden worldwide. The most effective treatment available for these patients is whole organ transplantation; however, due to the severely limited supply of donor livers and the side effects associated with the immunosuppressive regimen required to accept allograft, the mortality rate in patients with end-stage liver disease is annually rising. Stem cell-based therapy aims to provide alternative treatments by either cell transplantation or bioengineered construct transplantation. Human amnion epithelial cells (AEC) are a widely available, ethically neutral source of cells with the plasticity and potential of multipotent stem cells and immunomodulatory properties of perinatal cells. AEC have been proven to be able to achieve functional improvement towards hepatocyte-like cells, capable of rescuing animals with metabolic disorders; however, they showed limited metabolic activities in vitro. Decellularised extracellular matrix (ECM) scaffolds have gained recognition as adjunct biological support. Decellularised scaffolds maintain native ECM components and the 3D architecture instrumental of the organ, necessary to support cells' maturation and function. We combined ECM-scaffold technology with primary human AEC, which we demonstrated being equipped with essential ECM-adhesion proteins, and evaluated the effects on AEC differentiation into functional hepatocyte-like cells (HLC). This novel approach included the use of a custom 4D bioreactor to provide constant oxygenation and media perfusion to cells in 3D cultures over time. We successfully generated HLC positive for hepatic markers such as ALB, CYP3A4 and CK18. AEC-derived HLC displayed early signs of hepatocyte phenotype, secreted albumin and urea, and expressed Phase-1 and -2 enzymes. The combination of liver-specific ECM and bioreactor provides a system able to aid differentiation into HLC, indicating that the innovative perfusion ECM-scaffold technology may support the functional improvement of multipotent and pluripotent stem cells, with important repercussions in the bioengineering of constructs for transplantation.

3.
Hepatology ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870288

RESUMO

BACKGROUND AND AIMS: The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/ß-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS: Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS: Our results showed that, unlike in rodents, activation of Wnt/ß-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFß inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/ß-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/ß-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS: This study revealed a network of NFκB, TGFß, and Wnt/ß-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.

4.
Sci Adv ; 9(35): eadh1168, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656796

RESUMO

Extracellular vesicles (EVs) have been established to play important roles in cell-cell communication and shown promise as therapeutic agents. However, we still lack a basic understanding of how cells respond upon exposure to EVs from different cell sources at various doses. Thus, we treated fibroblasts with EVs from 12 different cell sources at doses between 20 and 200,000 per cell, analyzed their transcriptional effects, and functionally confirmed the findings in various cell types in vitro, and in vivo using single-cell RNA sequencing. Unbiased global analysis revealed EV dose to have a more significant effect than cell source, such that high doses down-regulated exocytosis and up-regulated lysosomal activity. However, EV cell source-specific responses were observed at low doses, and these reflected the activities of the EV's source cells. Last, we assessed EV-derived transcript abundance and found that immune cell-derived EVs were most associated with recipient cells. Together, this study provides important insights into the cellular response to EVs.


Assuntos
Vesículas Extracelulares , Exocitose , Fibroblastos , Comunicação Celular
5.
Cells ; 12(16)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37626924

RESUMO

The liver is a vital organ responsible for metabolic and digestive functions, protein synthesis, detoxification, and numerous other necessary functions. Various acute, chronic, and neoplastic disorders affect the liver and hamper its biological functions. Most of the untreated liver diseases lead to inflammation and fibrosis which develop into cirrhosis. The human amniotic membrane (hAM), the innermost layer of the fetal placenta, is composed of multiple layers that include growth-factor rich basement membrane, epithelial and mesenchymal stromal cell layers. hAM possesses distinct beneficial anti-fibrotic, anti-inflammatory and pro-regenerative properties via the secretion of multiple potent trophic factors and/or direct differentiation into hepatic cells which place hAM-based therapies as potential therapeutic strategies for the treatment of chronic liver diseases. Decellularized hAM is also an ideal scaffold for liver tissue engineering as this biocompatible niche provides an excellent milieu for cell proliferation and hepatocytic differentiation. Therefore, the current review discusses the therapeutic potential of hAM and its derivatives in providing therapeutic solutions for liver pathologies including acute liver failure, metabolic disorders, liver fibrosis as well as its application in liver tissue engineering.


Assuntos
Âmnio , Hepatopatias , Humanos , Feminino , Gravidez , Hepatopatias/terapia , Cirrose Hepática/terapia , Hepatócitos
6.
Cell J ; 25(8): 524-535, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37641414

RESUMO

OBJECTIVE: Macrophages are multifunctional immune cells widely used in immunological research. While autologous macrophages have been widely used in several biomedical applications, allogeneic macrophages have also demonstrated similar or even superior therapeutic potential. The umbilical cord blood (UCB) is a well-described source of abundant allogenic monocytes and macrophages that is easy to collect and can be processed without invasive methods. Current monocyte isolation procedures frequently result in heterogenous cell products, with limited yields, activated cells, and high cost. This study outlines a simple isolation method that results in high yields and pure monocytes with the potential to differentiate into functional macrophages. MATERIALS AND METHODS: In the experimental study, we describe a simple and efficient protocol to isolate highpurity monocytes. After collection of human UCB samples, we used a gradient-based procedure composed of three consecutive gradient steps: i. Hydroxyethyl starch-based erythrocytes sedimentation, followed by ii. Mononuclear cells (MNCs) isolation by Ficoll-Hypaque gradient, and iii. Separation of monocytes from lymphocytes by a slight hyperosmolar Percoll gradient (0.573 g/ml). Then the differentiation potential of isolated monocytes to pro- and antiinflammatory macrophages were evaluated in the presence of granulocyte colony-stimulating factor (GM-CSF) and macrophage CSF (M-CSF), respectively. The macrophages were functionally characterized as well. RESULTS: A high yield of monocytes after isolation (25 to 50 million) with a high purity (>95%) could be obtained from every 100-150 ml UCB. Isolated monocytes were defined based on their phenotype and surface markers expression pattern. Moreover, they possess the ability to differentiate into pro- or anti-inflammatory macrophages with specific phenotypes, gene/surface protein markers, cytokine secretion patterns, T-cell interactions, and phagocytosis activity. CONCLUSION: Here we describe a simple and reproducible procedure for isolation of pure monocytes from UCB, which could be utilized to provide functional macrophages as a reliable and feasible source of allogenic macrophages for biomedical research.

7.
Semin Liver Dis ; 43(2): 149-162, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37156523

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Increased sympathetic (noradrenergic) nerve tone has a complex role in the etiopathomechanism of NAFLD, affecting the development/progression of steatosis, inflammation, fibrosis, and liver hemodynamical alterations. Also, lipid sensing by vagal afferent fibers is an important player in the development of hepatic steatosis. Moreover, disorganization and progressive degeneration of liver sympathetic nerves were recently described in human and experimental NAFLD. These structural alterations likely come along with impaired liver sympathetic nerve functionality and lack of adequate hepatic noradrenergic signaling. Here, we first overview the anatomy and physiology of liver nerves. Then, we discuss the nerve impairments in NAFLD and their pathophysiological consequences in hepatic metabolism, inflammation, fibrosis, and hemodynamics. We conclude that further studies considering the spatial-temporal dynamics of structural and functional changes in the hepatic nervous system may lead to more targeted pharmacotherapeutic advances in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Fibrose , Inflamação/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Stem Cells Transl Med ; 12(5): 258-265, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027834

RESUMO

Perinatal derivatives (PnD) are drawing growing interest among the scientific community as an unrestricted source of multipotent stem cells, secretome, and biological matrices. They are useful for the treatment of diseases that currently have limited or no effective therapeutic options, but they require the development of regenerative approaches. With this development, the question of regulation of donation, processing, and distribution has therefore become more important. Within the European Cooperation in Science and Technology (COST) community, we compiled a group of international experts on PnD technologies, who revised and compared existing EU national regulations. Notably, despite clear European directives, each EU Country has developed their own implementation and standard levels for cell- and tissue-based therapies. To enable extended applications of PnD treatments within the EU community and worldwide, harmonization is highly recommended. This paper aims to provide an overview of the various options available to introduce PnD into clinical practice. For this purpose, the different aspects resulting from (1) the type of PnD, (2) the amount of available data, (3) the degree of manipulation, and (4) the intended application and the process toward a possible commercialization will be presented. In the future, it will be important to find a balance between regulatory requirements and the best medical quality of the PnD product.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , União Europeia
9.
Expert Rev Gastroenterol Hepatol ; 17(3): 237-249, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36692130

RESUMO

INTRODUCTION: According to the recent updates from World Health Organization, liver diseases are the 12th most common cause of mortality. Currently, orthotopic liver transplantation (OLT) is the most effective and the only treatment for end-stage liver diseases. Owing to several shortcomings like finite numbers of healthy organ donors, lifelong immunosuppression, and complexity of the procedure, cell and cell-derivatives therapies have emerged as a potential therapeutic alternative for liver diseases. Various cell types and therapies have been proposed and their therapeutic effects evaluated in preclinical or clinical studies, including hepatocytes, hepatocyte-like cells (HLCs) derived from stem cells, human liver stem cells (HLSCs), combination therapies with various types of cells, organoids, and implantable cell-biomaterial constructs with synthetic and natural polymers or even decellularized extracellular matrix (ECM). AREAS COVERED: In this review, we highlighted the current status of cell and cell-derivative-based therapies for liver diseases. Furthermore, we discussed future prospects of using HLCs, liver organoids, and their combination therapies. EXPERT OPINION: Promising application of stem cell-based techniques including iPSC technology has been integrated into novel techniques such as gene editing, directed differentiation, and organoid technology. iPSCs offer promising prospects to represent novel therapeutic strategies and modeling liver diseases.


Assuntos
Doença Hepática Terminal , Células-Tronco Pluripotentes Induzidas , Hepatopatias , Humanos , Hepatopatias/terapia , Hepatopatias/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença Hepática Terminal/terapia , Diferenciação Celular
10.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499207

RESUMO

Three decades of hepatocyte transplantation have confirmed such a cell-based approach as an adjunct or alternative treatment to solid organ transplantation. Donor cell survival and engraftment were indirectly measured by hepatospecific secretive or released metabolites, such as ammonia metabolism in urea cycle defects. In cases of sepsis or viral infection, ammonia levels can significantly and abruptly increase in these recipients, erroneously implying rejection. Pro-inflammatory cytokines associated with viral or bacterial infections are known to affect many liver functions, including drug-metabolizing enzymes and hepatic transport activities. We examined the influence of pro-inflammatory cytokines in primary human hepatocytes, isolated from both normal donors or patients with metabolic liver diseases. Different measures of hepatocyte functions, including ammonia metabolism and phase 1-3 metabolism, were performed. All the hepatic functions were profoundly and significantly suppressed after exposure to concentrations of from 0.1 to 10 ng/mL of different inflammatory cytokines, alone and in combination. Our data indicate that, like phase I metabolism, suppression of phase II/III and ammonia metabolism occurs in hepatocytes exposed to pro-inflammatory cytokines in the absence of cell death. Such inflammatory events do not necessarily indicate a rejection response or loss of the cell graft, and these systemic inflammatory signals should be carefully considered when the immunosuppressant regiment is reduced or relieved in a hepatocyte transplantation recipient in response to such alleged rejection.


Assuntos
Hepatopatias , Doenças Metabólicas , Humanos , Citocinas/metabolismo , Amônia/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Doenças Metabólicas/metabolismo
11.
Front Bioeng Biotechnol ; 10: 961987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263355

RESUMO

Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.

12.
Front Bioeng Biotechnol ; 10: 977590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304904

RESUMO

Perinatal derivatives are drawing growing interest among the scientific community as an unrestricted source of multipotent stromal cells, stem cells, cellular soluble mediators, and biological matrices. They are useful for the treatment of diseases that currently have limited or no effective therapeutic options by means of developing regenerative approaches. In this paper, to generate a complete view of the state of the art, a comprehensive 10-years compilation of clinical-trial data with the common denominator of PnD usage has been discussed, including commercialized products. A set of criteria was delineated to challenge the 10-years compilation of clinical trials data. We focused our attention on several aspects including, but not limited to, treated disorders, minimal or substantial manipulation, route of administration, dosage, and frequency of application. Interestingly, a clear correlation of PnD products was observed within conditions, way of administration or dosage, suggesting there is a consolidated clinical practice approach for the use of PnD in medicine. No regulatory aspects could be read from the database since this information is not mandatory for registration. The database will be publicly available for consultation. In summary, the main aims of this position paper are to show possibilities for clinical application of PnD and propose an approach for clinical trial preparation and registration in a uniform and standardized way. For this purpose, a questionnaire was created compiling different sections that are relevant when starting a new clinical trial using PnD. More importantly, we want to bring the attention of the medical community to the perinatal products as a consolidated and efficient alternative for their use as a new standard of care in the clinical practice.

14.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955703

RESUMO

The increasing cancer incidence has certified oncological management as one of the most critical challenges for the coming decades. New anticancer strategies are still needed, despite the significant advances brought to the forefront in the last decades. The most recent, promising therapeutic approaches have benefitted from the application of human perinatal derivatives (PnD), biological mediators with proven benefits in several fields beyond oncology. To elucidate preclinical results and clinic outcomes achieved in the oncological field, we present a narrative review of the studies resorting to animal models to assess specific outcomes of PnD products. Recent preclinical evidence points to promising anticancer effects offered by PnD mediators isolated from the placenta, amniotic membrane, amniotic fluid, and umbilical cord. Described effects include tumorigenesis prevention, uncontrolled growth or regrowth inhibition, tumor homing ability, and adequate cell-based delivery capacity. Furthermore, PnD treatments have been described as supportive of chemotherapy and radiological therapies, particularly when resistance has been reported. However, opposite effects of PnD products have also been observed, offering support and trophic effect to malignant cells. Such paradoxical and dichotomous roles need to be intensively investigated. Current hypotheses identify as explanatory some critical factors, such as the type of the PnD biological products used or the manufacturing procedure to prepare the tissue/cellular treatment, the experimental design (including human-relevant animal models), and intrinsic pathophysiological characteristics. The effective and safe translation of PnD treatments to clinical practice relies on the collaborative efforts of all researchers working with human-relevant oncological preclinical models. However, it requires proper guidelines and consensus compiled by experts and health workers who accurately describe the methodology of tissue collection, PnD isolation, manufacturing, preservation, and delivery to the final user.


Assuntos
Neoplasias , Animais , Feminino , Humanos , Neoplasias/tratamento farmacológico , Gravidez
15.
Bioengineering (Basel) ; 9(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36004917

RESUMO

The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.

16.
Cells ; 11(7)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406638

RESUMO

Liver disorders have been increasing globally in recent years. These diseases are associated with high morbidity and mortality rates and impose high care costs on the health system. Acute liver failure, chronic and congenital liver diseases, as well as hepatocellular carcinoma have been limitedly treated by whole organ transplantation so far. But novel treatments for liver disorders using cell-based approaches have emerged in recent years. Extra-embryonic tissues, including umbilical cord, amnion membrane, and chorion plate, contain multipotent stem cells. The pre-sent manuscript discusses potential application of extraembryonic mesenchymal stromal/stem cells, focusing on the management of liver diseases. Extra-embryonic MSC are characterized by robust and constitutive anti-inflammatory and anti-fibrotic properties, indicating as therapeutic agents for inflammatory conditions such as liver fibrosis or advanced cirrhosis, as well as chronic inflammatory settings or deranged immune responses.


Assuntos
Células-Tronco Mesenquimais , Âmnio , Diferenciação Celular , Humanos , Cirrose Hepática/terapia , Cordão Umbilical
17.
Front Immunol ; 13: 840146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355984

RESUMO

Our immune system actively fights bacteria and viruses, and it must strike a delicate balance between over- and under-reaction, just like Daedalus and Icarus in Greek mythology, who could not escape their imprisonment by flying too high or too low. Both human amniotic epithelial and mesenchymal stromal cells and the conditioned medium generated from their culture exert multiple immunosuppressive activities. They have strong immunomodulatory properties that are influenced by the types and intensity of inflammatory stimuli present in the microenvironment. Notably, very recently, the immunomodulatory activity of human adult renal stem/progenitor cells (ARPCs) has been discovered. ARPCs cause a decrease in Tregs and CD3+ CD4- CD8- (DN) T cells in the early stages of inflammation, encouraging inflammation, and an increase in the late stages of inflammation, favoring inflammation quenching. If the inflammatory trigger continues, however, ARPCs cause a further increase in DN T cells to avoid the development of a harmful inflammatory state. As in the flight of Daedalus and Icarus, who could not fly too high or too low to not destroy their wings by the heat of the sun or the humidity of the sea, in response to an inflammatory environment, stem cells seem to behave by paying attention to regulating T cells in the balance between immune tolerance and autoimmunity. Recognizing the existence of both suppressive and stimulatory properties, and the mechanisms that underpin the duality of immune reaction, will aid in the development of active immunotherapeutic approaches that manipulate the immune system to achieve therapeutic benefit.


Assuntos
Células-Tronco Mesenquimais , Adulto , Animais , Humanos , Imunomodulação , Inflamação , Células-Tronco , Linfócitos T
18.
Stem Cell Res Ther ; 13(1): 31, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35073957

RESUMO

OBJECTIVE: To gain insight into the molecular mechanisms underlying the early stages of vocal fold extracellular matrix (ECM) remodeling after a mid-membranous injury resulting from the use of human amniotic epithelial cells (hAEC), as a novel regenerative medicine cell-based therapy. METHODS: Vocal folds of six female, New Zealand White rabbits were bilaterally injured. Three rabbits had immediate bilateral direct injection of 1 × 106 hAEC in 100 µl of saline solution (hAEC) and three with 100 µl of saline solution (controls, CTR). Rabbits were euthanized 6 weeks after injury. Proteomic analyses (in-gel trypsin protein digestion, LC-MS/MS, protein identification using Proteome Discoverer and the Uniprot Oryctolagus cuniculus (Rabbit) proteome) and histological analyses were performed. RESULTS: hAEC treatment significantly increased the expression of ECM proteins, elastin microfibril interface-located protein 1 (EMILIN-1) and myocilin that are primarily involved in elastogenesis of blood vessels and granulation tissue. A reactome pathway analysis showed increased activity of the anchoring fibril formation by collagen I and laminin, providing mechanical stability and activation of cell signaling pathways regulating cell function. hAEC increased the abundance of keratin 1 indicating accelerated induction of the differentiation programming of the basal epithelial cells and, thereby, improved barrier function. Lastly, upregulation of Rab GDP dissociation inhibitor indicates that hAEC activate the vesicle endocytic and exocytic pathways, supporting the exosome-mediated activation of cell-matrix and cell-to-cell interactions. CONCLUSIONS: This pilot study suggests that injection of hAEC into an injured rabbit vocal fold favorably alters ECM composition creating a microenvironment that accelerates differentiation of regenerated epithelium and promotes stabilization of new blood vessels indicative of accelerated and improved repair.


Assuntos
Cicatriz , Prega Vocal , Animais , Transplante de Células , Cromatografia Líquida , Cicatriz/patologia , Células Epiteliais/patologia , Feminino , Humanos , Projetos Piloto , Proteômica , Coelhos , Espectrometria de Massas em Tandem
19.
Cell Transplant ; 31: 9636897211069900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094608

RESUMO

Hepatocyte transplantation is a promising treatment for liver failure and inborn metabolic liver diseases, but progress has been hampered by a scarcity of available organs. Here, hepatocytes isolated from livers procured for a neonatal hepatocyte donation program within a research setting were assessed for metabolic function and suitability for transplantation. Organ donation was considered for infants who died in neonatal intensive care in the Stockholm region during 2015-2021. Inclusion was assessed when a decision to discontinue life-sustaining treatment had been made and hepatectomy performed after declaration of death. Hepatocyte isolation was performed by three-step collagenase perfusion. Hepatocyte viability, yield, and function were assessed using fresh and cryopreserved cells. Engraftment and maturation of cryopreserved neonatal hepatocytes were assessed by transplantation into an immunodeficient mouse model and analysis of the gene expression of phase I, phase II, and liver-specific enzymes and proteins. Twelve livers were procured. Median warm ischemia time (WIT) was 190 [interquartile range (IQR): 80-210] minutes. Median viability was 86% (IQR: 71%-91%). Median yield was 6.9 (IQR: 3.4-12.8) x106 viable hepatocytes/g. Transplantation into immunodeficient mice resulted in good engraftment and maturation of hepatocyte-specific proteins and enzymes. A neonatal organ donation program including preterm born infants was found to be feasible. Hepatocytes isolated from neonatal donors had good viability, function, and engraftment despite prolonged WIT. Therefore, neonatal livers should be considered as a donor source for clinical hepatocyte transplantation, even in cases with extended WIT.


Assuntos
Transplante de Fígado , Obtenção de Tecidos e Órgãos , Animais , Hepatócitos/metabolismo , Humanos , Recém-Nascido , Fígado/metabolismo , Transplante de Fígado/métodos , Camundongos , Doadores de Tecidos
20.
Antioxidants (Basel) ; 10(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34356326

RESUMO

Despite progress in the treatment of non-visceral malignancies, the prognosis remains poor for malignancies of visceral organs and novel therapeutic approaches are urgently required. We evaluated a novel therapeutic regimen based on treatment with Se-methylselenocysteine (MSC) and concomitant tumor-specific induction of Kynurenine aminotransferase 1 (KYAT1) in hepatocellular carcinoma (HCC) cell lines, using either vector-based and/or lipid nanoparticle-mediated delivery of mRNA. Supplementation of MSC in KYAT1 overexpressed cells resulted in significantly increased cytotoxicity, due to ROS formation, as compared to MSC alone. Furthermore, microRNA antisense-targeted sites for miR122, known to be widely expressed in normal hepatocytes while downregulated in hepatocellular carcinoma, were added to specifically limit cytotoxicity in HCC cells, thereby limiting the off-target effects. KYAT1 expression was significantly reduced in cells with high levels of miR122 supporting the concept of miR-guided induction of tumor-specific cytotoxicity. The addition of alpha-ketoacid favored the production of methylselenol, enhancing the cytotoxic efficacy of MSC in HCC cells, with no effects on primary human hepatocytes. Altogether, the proposed regimen offers great potential to safely and specifically target hepatic tumors that are currently untreatable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA