Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(32): 9235-9243, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34378388

RESUMO

The rotational and translational diffusion of negatively charged and uncharged spin probes in five imidazolium-based room-temperature ionic liquids (RTILs), 1-ethyl-3-methylimidazolium tetrafluoroborate, emimBF4, 1-butyl-3-methylimidazolium tetrafluoroborate, bmimBF4, 1-octyl-3-methylimidazolium tetrafluoroborate, omimBF4, 1-octyl-3-methylimidazolium hexafluorophosphate, omimPF6, and 1-octyl-3-methylimidazolium chloride, omimCl, has been studied by means of electron paramagnetic resonance spectroscopy. Detailed analyses of the spin-Hamiltonian parameters and spin exchange interactions have been carried out. The temperature dependences of the line broadening induced by the electronic dipole-dipole interaction and the electron spin exchange coupling are determined. The translational mobility of spin probes is semiquantitatively characterized and successfully explained in the framework of a hypothesis based on the assumption of polar and unpolar domains within the RTILs.

2.
J Phys Chem B ; 124(48): 11007-11014, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205985

RESUMO

Temperature dependences of electron paramagnetic resonance (EPR) spectra of an imidazoline nitroxide biradical spin probe in a series of room-temperature ionic liquids in the temperature range 124-390 K have been quantitatively simulated. The unusual asymmetric EPR spectrum shape previously observed in these systems [Kokorin et al., Appl. Magn. Res. 48 (2016) 287] is shown to originate from anisotropic rotational diffusion of the probe molecule. All experimental spectra were quantitatively reproduced in simulation using a unified set of geometrical and magnetic parameters of the spin probe, which were found to be fully consistent with the biradical geometry obtained from density functional theory calculations. Temperature dependences of rotation diffusion coefficient of the probe characterize the molecular mobility of the ionic liquid, whereas the temperature dependences of the spin-exchange integral J and of the isotropic hyperfine interaction constant, aN, are shown to reflect the intramolecular conformation motions of the biradical probe.

3.
Phys Chem Chem Phys ; 18(21): 14442-8, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27171365

RESUMO

Chemical reactivity is profoundly affected by solvent properties. Room temperature ionic liquids (RTILs) obtain molecular environments that differ vastly from those established using molecular solvents with comparable macroscopic properties. In particular, charges are expected to be completely shielded in RTILs even though their dielectric constants are typically low. This raises the question whether electron transfer (ET) reactions in RTILs can be described in terms of Marcus' theory, a model that is fundamentally based on continuum dielectric theory. Herein, we elucidate this question by studying a degenerate electron transfer process, which by design, is not affected by ambiguities in the driving force of the reaction and thus allows a clear-cut assessment of the ET activation energy. We report the rate constants and the activation parameters of the electron self-exchange reaction in the TCNE/TCNE˙(-) couple in seven ionic liquids. The exchange rate constants range from 5.4 × 10(7) M(-1) s(-1) to 9.1 × 10(8) M(-1) s(-1) at 330 K and the activation energies vary from 14 kJ mol(-1) to 41 kJ mol(-1). The results are discussed in the framework of Marcus' theory. It is found that the solvent dependence of the rate constants cannot be described by the classical proportionality to the Pekar factor γ = (1/n(2) - 1/εs).

4.
Phys Chem Chem Phys ; 17(5): 3415-20, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25529308

RESUMO

The large structural difference between thianthrene radical cations and their neutral parent molecules can possibly affect their electron self-exchange reactions. Before this can be investigated experimentally, it is necessary to first understand the influence of the solvent on such electron transfer reactions. To achieve this, the rate constants of the electron self-exchange reactions of the Th˙(+)/Th and MTh˙(+)/MTh (Th = thianthrene, MTh = 2,3,7,8-tetramethoxythianthrene) couples were investigated by means of ESR line broadening experiments in different solvents at 293 K. The diffusion corrected rate constants cover a range of 7.2 × 10(8)≤ket≤ 44 × 10(8) M(-1) s(-1) for Th˙(+)/Th and 2.0 × 10(8)≤ket≤ 11.6 × 10(8) M(-1) s(-1) for MTh˙(+)/MTh, respectively. The results were analysed within the framework of the Marcus Theory and the characteristic reorganization energy, λ, was determined. Both couples clearly show a solvent dynamic effect controlled by the longitudinal relaxation time τL of the solvents. However, the influence of the structural changes, in terms of λ, was smaller than expected at room temperature.

5.
Chemistry ; 14(20): 6213-21, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18506871

RESUMO

The driving-force dependence of bimolecular fluorescence quenching by electron transfer in solution, the Rehm-Weller experiment, is revisited. One of the three long-standing unsolved questions about the features of this experiment is carefully analysed here, that is, is there a diffusional plateau? New experimental quenching rates are compiled for a single electron donor, 2,5-bis(dimethylamino)-1,3-benzenedicarbonitrile, and eighteen electron acceptors in acetonitrile. The data are analysed in the framework of differential encounter theory by using an extended version of the Marcus theory to model the intrinsic electron-transfer step. Only by including the hydrodynamic effect and the solvent structure can the experimental findings be well modelled. The diffusional control region, the "plateau", reveals the inherent distance dependence of the reaction, which is shown to be a general feature of electron transfer in solution.

6.
J Am Chem Soc ; 126(17): 5635-46, 2004 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-15113235

RESUMO

The electron self-exchange between a neutral molecule and its charged radical, which is part of a spin-correlated radical ion pair, gives rise to line width effects in the fluorescence-detected MARY (magnetic field effect on reaction yield) spectrum similar to those observed in EPR spectroscopy. An increasing self-exchange rate (i.e., a higher concentration of the neutral molecule) leads to broadening and subsequent narrowing of the spectrum. Along with a series of MARY spectra recorded for several systems (the fluorophores pyrene, pyrene-d(10) and N-methylcarbazole in combination with 1,2- and 1,4-dicyanobenzene) in various solvents, a theoretical model is developed that describes the spin evolution and the diffusive recombination of the radical pair under the influence of the external magnetic field and electron self-exchange, thereby allowing the simulation of MARY spectra of the systems investigated experimentally. The spin evolution of the radicals in the pair is calculated separately using spin correlation tensors, thereby allowing rigorous quantum mechanical calculations for real spin systems. It is shown that the combination of these simulations with high resolution, low noise experimental spectra makes the MARY technique a novel, quantitative method for the determination of self-exchange rate constants. In comparison to a simple analytical formula which estimates the self-exchange rate constant from the slope of the linear part of a line width vs concentration plot, the simulation method yields more reliable and accurate results. The correctness of the results obtained by the MARY method is proved by a comparison with corresponding data from the well-established EPR line broadening technique. With its less stringent restrictions on radical lifetime and stability, the MARY technique provides an alternative to the classical EPR method, in particular for systems involving short-lived and unstable radicals.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 58(6): 1219-26, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11993470

RESUMO

Dimerization enthalpies and equilibrium constants have been determined for the radical anion of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), the radical cations of N,N,N',N'-tetramethyl-p-phenylenediamine, N,N-dimethyl-p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, N,N,N',N'-tetraethyl-p-phenylenediamine, N,N-diethyl-p-phenylenediamine and N,N,N'-trimethyl-p-phenylenediamine. Neutral radicals investigated are 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and galvinoxyl. Solvent used was acetone, EtOH/Et2O-mixture (2:1 volume), propionitrile/butyronitrile-mixture (1:1 M) and dichloromethane. Measured dimerization enthalpies deltaHdim vary from -72.1 to -16.6 k/mol.


Assuntos
Benzoquinonas/química , Físico-Química/métodos , Acetona/química , Compostos Benzidrílicos/química , Óxidos N-Cíclicos/química , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres , Cloreto de Metileno/química , Modelos Estatísticos , Nitrilas/química , Fenilenodiaminas/química , Temperatura , Tetrametilfenilenodiamina/química , Termodinâmica
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 57(10): 1959-69, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11666076

RESUMO

The inner-sphere reorganization energy of the electron self-exchange of the couple cyclooctatetraene/cyclooctatetraene radical anion has been investigated by quantum mechanical calculations. The more stable Jahn Teller distorted B2g conformation of the radical anion has been used in this study. Two different theories have been applied in this first part. The harmonic approximation in the classical Marcus scheme has been modified by using projected force constants, which are obtained from the complete force constant matrix and the geometry changes of the molecule during the ET (introduced by Mikkelsen). A different approach (introduced by Nelsen) combines the different energies of the neutral and radical anion with and without relaxation corresponding to the vertical ionization potential and the vertical electron affinity. The electronic energies of the neutral molecule and the radical anion differ dramatically applying three different levels of quantum mechanical calculations (UAM1, UB3LYP, PMP2 with three different basis sets with and without diffuse functions). Nevertheless the Nelsen method gives almost consistent results for the inner-sphere reorganization energies: 120.1 kJ/mol for semiempirical UAM1 method, 159.3 kJ/mol, 156.4 kJ/mol and 158.3 kJ/mol for density functional UB3LYP/6-31G*, UB3LYP/6-31++G* and UB3LYP/AUG-cc-pVDZ calculations and 192.5 kJ/mol for ab-initio PMP2/6-31G* investigations, respectively. These values are in agreement with earlier experimental work supposing the total reorganization energy to be larger than 38 kcal/mol assuming an electron self-exchange rate of 10(4) M(-1) s(-1). The simple harmonic approximation of Marcus relation has not yet been applied for a molecule like cyclooctatetraene with large torsional geometry changes. Using the projected force constants after scaling, considerably different results for the inner-sphere reorganization energy have been calculated: 738.1 kJ/mol for the UB3LYP/6-31G*, 743.3 kJ/mol for UB3LYP/6-31++G* and 759.1 kJ/mol for UB3LYP/AUG-cc-pVDZ level of theory. Comparison with our concentration dependent EPR experiments are controversial to the earlier experimental results, but the latter supports the assumption that the electron self-exchange occurs in a time scale so that the molecules cannot complete their vibrational motions. Therefore the projected Marcus relation is not valid for cyclooctatetraene/cyclooctatetraene radical anion including a large torsional change during the electron transfer.


Assuntos
Ânions , Biofísica , Hidrocarbonetos Cíclicos/química , Fenômenos Biofísicos , Modelos Moleculares , Modelos Teóricos , Conformação Proteica , Termodinâmica , Fatores de Tempo
9.
Biotechnol Bioeng ; 53(3): 274-82, 1997 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18633981

RESUMO

Controlled secretion of proteins from endocrine-derived cell lines has been proposed as a means to produce some classes of post-translationally modified proteins in bioreactors. Under the right biological and environmental conditions it may be possible to improve the product purity or quality relative to that obtained through steady (constitutive) secretion. The pancreatic-islet-derived cell line, betaTC-3, was selected as a model system to explore the secretory dynamics of insulin under various combinations of stimulatory or inhibitory environmental conditions. The betaTC-3 cells exhibited a glucose-mediated stimulus-response pattern which was saturated above 1 mM glucose and with an apparent "Kg" of 0.1 mM glucose. However, the kinetics of insulin synthesis were closely coupled to those of secretion such that betaTC-3 cells cycled between saturating and basal levels of glucose were never perturbed far from an intracellular synthesis-secretion equilibrium. When more powerful and selective agents were used to control secretion, the system performance improved markedly. A combination of 1 mM isobytylmethylxanthine (IBMX) and 1 microM carbachol (with saturating levels of glucose) could discharge 75% of stored insulin in 2 h. When this treatment was followed by incubation in media adjusted to attenuate the influx of calcium into the cells, intracellular pools were efficiently replenished within 24 h. Calcium attenuating treatments included hyperpolarization with reduced potassium (1 mM), calcium channel blockade with the dihydropyridine verapamil (1 microM), and the direct mass-action effect of reduced environmental calcium (0.5 mM versus 1.8 mM). Other inhibitory treatments were explored, but these tended to reduce both insulin synthesis and secretion. The best recharging treatment found was a combination of verapamil (1 microM) with reduced calcium level (0.5 mM).To demonstrate the feasibility of a controlled secretion process, betaTC-3 T-flask cultures were grown to confluence, then cycled through two periods of discharging (2 h) and recharging (20 h) with the best combinations of secretagogues and calcium attenuators. The overall process was quite efficient: Only 15% of the overall insulin secretion took place during the recharging episodes, and this residual secretion represented only 10% of the net insulin synthesis during these episodes. Discharging was very effective in the first episode (80% recovery of stored insulin), but slightly less efficient in subsequent discharging episodes, possibly due to a desensitization effect of the calcium attenuating media. Nevertheless, the regulated secretory pathway of betaTC-3 cells could be successfully harnessed to a controlled secretion process for the selective recovery of stored insulin.

10.
Biotechnol Bioeng ; 53(3): 283-9, 1997 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18633982

RESUMO

Certain classes of prohormones and other neuroendocrine or endocrine-derived secretory proteins are post-translationally modified in the secretory storage granules. If such molecules were to be biosynthesized to acceptable quantity and yield using endocrine-derived cell lines, it would be important to understand the relationship between the secretory dynamics and the conversion and release of the immature and mature forms of the molecule. We studied aspects of such a relationship using the endocrine-derived cell line betaTC-3, which synthesizes murine proinsulin, sequesters it into secretory granules, and converts it into mature insulin. In T-flask experiments with confluent cultures of betaTC-3 cells, intracellular and secreted (pro)insulin was sampled before and after episodes of stimulated exocytosis and recharging and quantified by radioimmunoassay and reversed-phase high-performance liquid chromatography (HPLC). Under conditions of steady-state secretion in glucose-rich growth medium the cells turned over their (pro)insulin inventory (90 +/- 5% mature insulin) at 2-3% per hour through secretion of (pro)insulin which was less than 70% mature. During an episode of hyperstimulated exocytosis induced by the combined secretagogues carbachol (1 microM) and isobutylmethylxanthine (1 mM), approximately 80% of the intracellular (pro)insulin stores were depleted within 2 h and 84 +/- 4% of the secreted (pro)insulin was in the mature form. Following the discharging episode, exocytosis was suppressed to 10% of its steady-state rate with a treatment which attenuated calcium influx (20 microM verapamil with reduced levels of calcium in the medium). Under this condition the secreted protein was only approximately 50% converted to mature insulin, but 85 +/- 10% of the net (pro)insulin accumulating within the intracellular stores was converted to the mature form. The inverse relationship between rate of secretion and degree of conversion of secreted (pro)insulin is consistent with a previously observed phenomenon of preferential basal secretion from immature secretory granules. This tends to enrich the secreted peptides in immature forms relative to the total intracellular pool. Preferential early secretion can best be overcome by rapid discharging of the long-term and predominantly mature stores. Thus, a cyclic controlled secretion process wherein product is collected during intermittent discharging episodes would provide a better yield of mature product than would steady-state secretion.

11.
Biotechnol Prog ; 12(6): 837-46, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8983208

RESUMO

Controlled secretion processes for the production of secretory proteins in monolayer culture have been described previously (Grampp et al. Adv. Biochem. Eng./ Biotechnol. 1992, 46, 35-62), but little is known about the feasibility of scaling such processes into high-density bioreactors. Two immobilized-cell, ceramic-matrix bioreactor configurations were tested using the beta TC-3 cell model system which, in monolayer culture, can be manipulated to secrete murine insulin in a highly controlled manner. One reactor was configured with an external recirculation reservoir for oxygen transfer and was operated as a conventional immobilized bed/recycle reactor. The other reactor was configured as a single-pass perfusion system with oxygen supplied by diffusion from silicone tubing positioned proximal to the porous walls of the ceramic matrix. After inoculation with beta TC-3 cells, both systems were perfused with serum-supplemented medium to stimulate cell growth, and they ultimately attained high densities (approximately 5 x 10(8) cells/mL of pore volume). To initiate controlled secretion operations, the reactor cores were washed with a serum-free basal medium, then exposed to a serum-free discharging medium containing secretory stimulants. Following several hours of discharging, the reactors were washed again, then switched to a serum-containing medium designed to quench the regulated secretion process. For the single-pass reactor these cycling operations were simple to implement and were effective in promoting the cyclic discharge and recharge of murine insulin. Because of the ability to reduce the perfusion rate in the single-pass reactor independent of oxygen transfer, the discharged insulin was captured in a relatively small volume (2 reactor core hold-up volumes), yielding a mean product concentration 10-fold greater than in the steady-state perfusate. Cyclic operation of the recirculating reactor was more difficult due to the complexity of switching between recirculation reservoirs, and the introduction of air bubbles during such operations resulted in the loss of biomass from the reactor after one cycle. Even in the first discharging cycle, the insulin yield was much lower than in the perfusate from the single-pass reactor, despite the comparable metabolic rates. The single-pass reactor was cycled successfully through four discharging and recharging episodes and maintained its ability to discharge insulin, albeit at a slower rate after the first discharge. Overall, 50-60% of the insulin secreted during the 48 h cycles was recovered during the brief discharging episodes. When insulin secretion rates and discharging yields were normalized to metabolic activity, neither high-density reactor system performed as well as did identically treated control T-flask cultures. It is hypothesized that the productivity and responsiveness of the high-density, pore-immobilized beta TC-3 cells are lower than in monolayer culture.


Assuntos
Reatores Biológicos , Insulina/metabolismo , Animais , Linhagem Celular , Meios de Cultura , Glucose/metabolismo , Secreção de Insulina , Cinética , Ácido Láctico/metabolismo , Camundongos
13.
Adv Biochem Eng Biotechnol ; 46: 35-62, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-1636482

RESUMO

Traditional industrial cell culture processes require extensive downstream product refining due to low product titer and purity in the spent growth medium. A controlled secretion process incorporating cells derived from endocrine or exocrine organs could potentially alleviate this processing burden by dynamically decoupling product recovery from cell growth and product biosynthesis. In addition, such specialized secretory cells may be uniquely capable of performing desirable post-translational processing of the secretory product. We briefly review the biology of regulated protein secretion as well as the biology and biochemistry of the signal transduction mechanisms by which regulated systems respond to environmental stimuli. Drawing on these and other basic principles from cell biology and bioengineering, we describe the important features of a controlled secretion process. Among other issues we discuss the choice of cell lines, expression systems, cell culture methods, and bioreactor configurations. We extensively analyze the kinetics of regulated secretion in the context of a controlled secretion process. This discussion is illustrated with experimental results from two model cell lines, recombinant AtT-20 and beta TC3, expressing recombinant human endocrine hormones or native murine insulin respectively.


Assuntos
Biossíntese de Proteínas , Animais , Engenharia Biomédica , Biotecnologia , Células Cultivadas , Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA