Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743618

RESUMO

Mesophyll resistance for CO2 diffusion (rm) is one of the main limitations for photosynthesis and plant growth. Breeding new varieties with lower rm requires knowledge of its distinct components. We tested new method for estimating the relative drawdowns of CO2 concentration (c) across hypostomatous leaves of Fagus sylvatica. This technique yields values of the ratio of the internal CO2 concentrations at the adaxial and abaxial leaf side, cd/cb, the drawdown in the intercellular air space (IAS), and intracellular drawdown between IAS and chloroplast stroma, cc/cbd. The method is based on carbon isotope composition of leaf dry matter and epicuticular wax isolated from upper and lower leaf sides. We investigated leaves from tree-canopy profile to analyse the effects of light and leaf anatomy on the drawdowns and partitioning of rm into its inter- (rIAS) and intracellular (rliq) components. Validity of the new method was tested by independent measurements of rm using conventional isotopic and gas exchange techniques. 73% of investigated leaves had adaxial epicuticular wax enriched in 13C compared to abaxial wax (by 0.50‰ on average), yielding 0.98 and 0.70 for average of cd/cb and cc/cbd, respectively. The rIAS to rliq proportion were 5.5:94.5% in sun-exposed and 14.8:85.2% in shaded leaves. cc dropped to less than half of the atmospheric value in the sunlit and to about two-thirds of it in shaded leaves. This method shows that rIAS is minor but not negligible part of rm and reflects leaf anatomy traits, i.e. leaf mass per area and thickness.

2.
Plant Biol (Stuttg) ; 24(7): 1240-1253, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35611757

RESUMO

Climate change is expected to increase the frequency and intensity of summer droughts. Sufficient drought resistance, the ability to acclimate to and/or recover after drought, is thus crucial for forest tree species. However, studies on the hydraulics of mature trees during and after drought in natura are scarce. In this study, we analysed trunk water content (electrical resistivity: ER) and further hydraulic (water potential, sap flow density, specific hydraulic conductivity, vulnerability to embolism) as well as wood anatomical traits (tree ring width, conduit diameter, conduit wall reinforcement) of drought-stressed (artificially induced summer drought via throughfall-exclusion) and unstressed Picea abies and Fagus sylvatica trees. In P. abies, ER indicated a strong reduction in trunk water content after 5 years of summer drought, corresponding to significantly lower pre-dawn leaf water potential and xylem sap flow density. Vulnerability to embolism tended to be higher in drought-stressed trees. In F. sylvatica, only small differences between drought-stressed and control trees were observed. Re-watering led to a rapid increase in water potentials and xylem sap flow of both drought-stressed trees, and to increased growth rates in the next growing season. ER analyses revealed lower trunk water content in P. abies trees growing on throughfall-exclusion plots even 1 year after re-watering, indicating a limited capacity to restore internal water reserves. Results demonstrated that P. abies is more susceptible to recurrent summer drought than F. sylvatica, and can exhibit long-lasting and pronounced legacy effects in trunk water reserves.


Assuntos
Abies , Fagus , Picea , Pinus , Secas , Estações do Ano , Árvores , Água
3.
J Exp Bot ; 66(22): 7113-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26320242

RESUMO

Common oak trees display endogenous rhythmic growth with alternating shoot and root flushes. To explore the mechanisms involved, microcuttings of the Quercus robur L. clone DF159 were used for (13)C/(15)N labelling in combination with RNA sequencing (RNASeq) transcript profiling of shoots and roots. The effect of plant internal resource availability on the rhythmic growth of the cuttings was tested through inoculation with the ectomycorrhizal fungus Piloderma croceum. Shoot and root flushes were related to parallel shifts in above- and below-ground C and, to a lesser extent, N allocation. Increased plant internal resource availability by P. croceum inoculation with enhanced plant growth affected neither the rhythmic growth nor the associated resource allocation patterns. Two shifts in transcript abundance were identified during root and shoot growth cessation, and most concerned genes were down-regulated. Inoculation with P. croceum suppressed these transcript shifts in roots, but not in shoots. To identify core processes governing the rhythmic growth, functions [Gene Ontology (GO) terms] of the genes differentially expressed during the growth cessation in both leaves and roots of non-inoculated plants and leaves of P. croceum-inoculated plants were examined. Besides genes related to resource acquisition and cell development, which might reflect rather than trigger rhythmic growth, genes involved in signalling and/or regulated by the circadian clock were identified. The results indicate that rhythmic growth involves dramatic oscillations in plant metabolism and gene regulation between below- and above-ground parts. Ectomycorrhizal symbiosis may play a previously unsuspected role in smoothing these oscillations without modifying the rhythmic growth pattern.


Assuntos
Relógios Biológicos , Quercus/crescimento & desenvolvimento , Basidiomycota/fisiologia , Relógios Biológicos/genética , Metabolismo dos Carboidratos , Carbono/metabolismo , DNA de Plantas , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Quercus/genética , Quercus/microbiologia , Análise de Sequência de DNA , Transdução de Sinais
4.
Environ Pollut ; 158(8): 2527-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20570421

RESUMO

Ground-level ozone (O(3)) has gained awareness as an agent of climate change. In this respect, key results are comprehended from a unique 8-year free-air O(3)-fumigation experiment, conducted on adult beech (Fagus sylvatica) at Kranzberg Forest (Germany). A novel canopy O(3) exposure methodology was employed that allowed whole-tree assessment in situ under twice-ambient O(3) levels. Elevated O(3) significantly weakened the C sink strength of the tree-soil system as evidenced by lowered photosynthesis and 44% reduction in whole-stem growth, but increased soil respiration. Associated effects in leaves and roots at the gene, cell and organ level varied from year to year, with drought being a crucial determinant of O(3) responsiveness. Regarding adult individuals of a late-successional tree species, empirical proof is provided first time in relation to recent modelling predictions that enhanced ground-level O(3) can substantially mitigate the C sequestration of forests in view of climate change.


Assuntos
Poluentes Atmosféricos/toxicidade , Carbono/metabolismo , Fagus/metabolismo , Ozônio/toxicidade , Árvores/metabolismo , Poluentes Atmosféricos/metabolismo , Alemanha , Fotossíntese/efeitos dos fármacos
5.
Environ Pollut ; 158(6): 1990-2006, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20133031

RESUMO

Recent evidence from novel phytotron and free-air ozone (O3) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O3 sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O3 apparently counteracts positive effects of elevated CO2 and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se. Complexity in O3 responsiveness increased under the influence of pathogens and herbivores. The new evidence does not conflict in principle with previous findings that, however, pointed to a low ecological significance. This new knowledge on trees' O3 responsiveness beyond the juvenile stage in plantations and forests nevertheless implies limited predictability due to complexity in biotic and abiotic interactions. Unravelling underlying mechanisms is mandatory for assessing O3 risks as an important component of climate change scenarios.


Assuntos
Poluentes Atmosféricos/toxicidade , Betula/efeitos dos fármacos , Mudança Climática , Agricultura Florestal/métodos , Populus/efeitos dos fármacos , Poluentes Atmosféricos/análise , Betula/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento
6.
Environ Pollut ; 158(4): 1036-42, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19796853

RESUMO

Here we synthesize key findings from a series of experiments to gain new insight on inter-plant competition between juvenile beech (Fagus sylvatica) and spruce (Picea abies) under the influence of increased O(3) and CO(2) concentrations. Competitiveness of plants was quantified and mechanistically interpreted as space-related resource investments and gains. Stable isotopes were addressed as temporal integrators of plant performance, such as photosynthesis and its relation to water use and nitrogen uptake. In the weaker competitor, beech, efficiency in space-related aboveground resource investment was decreased in competition with spruce and positively related to Delta(13)C, as well as stomatal conductance, but negatively related to delta(18)O. Likewise, our synthesis revealed that strong belowground competition for water in spruce was paralleled in this species by high N assimilation capacity. We suggest combining the time-integrative potential of stable isotopes with space-related investigations of competitiveness to accomplish mechanistic understanding of plant competition for resources.


Assuntos
Poluentes Atmosféricos/toxicidade , Dióxido de Carbono/metabolismo , Fagus/metabolismo , Ozônio/toxicidade , Picea/metabolismo , Biomassa , Isótopos de Carbono/metabolismo , Fagus/efeitos dos fármacos , Fagus/crescimento & desenvolvimento , Nitrogênio/metabolismo , Isótopos de Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Picea/efeitos dos fármacos , Picea/crescimento & desenvolvimento , Água/metabolismo
7.
Ann Bot ; 101(8): 1089-98, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17693454

RESUMO

BACKGROUND AND AIMS: Patterns and variations in concentration of carbon-based secondary compounds in plant tissues have been explained by means of different complementary and, in some cases, contradictory plant defence hypotheses for more than 20 years. These hypotheses are conceptual models which consider environmental impacts on plant internal demands. In the present study, a mathematical model is presented, which converts and integrates the concepts of the 'Growth-Differentiation Balance' hypothesis and the 'Protein Competition' model into a dynamic plant growth model, that was tested with concentration data of polyphenols in leaves of juvenile apple, beech and spruce trees. The modelling approach is part of the plant growth model PLATHO that considers simultaneously different environmental impacts on the most important physiological processes of plants. METHODS: The modelling approach for plant internal resource allocation is based on a priority scheme assuming that growth processes have priority over allocation to secondary compounds and that growth-related metabolism is more strongly affected by nitrogen deficiency than defence-related secondary metabolism. KEY RESULTS: It is shown that the model can reproduce the effect of nitrogen fertilization on allocation patterns in apple trees and the effects of elevated CO(2) and competition in juvenile beech and spruce trees. The analysis of model behaviour reveals that large fluctuations in plant internal availability of carbon and nitrogen are possible within a single vegetation period. Furthermore, the model displays a non-linear allocation behaviour to carbon-based secondary compounds. CONCLUSIONS: The simulation results corroborate the underlying assumptions of the presented modelling approach for resource partitioning between growth-related primary metabolism and defence-related secondary metabolism. Thus, the dynamical modelling approach, which considers variable source and sink strengths of plant internal resources within different phenological growth stages, presents a successful translation of existing concepts into a dynamic mathematical model.


Assuntos
Carbono/metabolismo , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Simulação por Computador , Fagus/crescimento & desenvolvimento , Fagus/metabolismo , Malus/crescimento & desenvolvimento , Malus/metabolismo , Nitrogênio/metabolismo , Picea/crescimento & desenvolvimento , Picea/metabolismo
8.
Plant Biol (Stuttg) ; 8(4): 503-14, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16906487

RESUMO

Inter- and intra-specific competition between plants for external resources is a critical process for plant growth in natural and managed ecosystems. We present a new approach to simulate competition for the resources light, water, and nitrogen between individual plants within a canopy. This approach was incorporated in a process-oriented plant growth simulation model. The concept of modelling competition is based on competition coefficients calculated from the overlap of occupied crown and soil volumes of each plant individual with the occupied volumes of its four nearest neighbours. The model was parameterised with data from a two-year phytotron experiment with juvenile beech and spruce trees growing in mono- and mixed cultures. For testing the model, an independent data set from this experiment and data from a second phytotron experiment with mixed cultures were used. The model was applied to analyse the consequences of start conditions and plant density on plant-plant competition. In both experiments, spruce dominated beech in mixed cultures. Based on model simulations, we postulate a large influence of start conditions and stand density on the outcome of the competition between the species. When both species have similar heights at the time of canopy closure, the model suggests a greater morphological plasticity of beech compared with spruce to be the crucial mechanism for competitiveness in mixed canopies. Similar to the experiment, in the model greater plasticity was a disadvantage for beech leading to it being outcompeted by the more persistent spruce.


Assuntos
Fagus/crescimento & desenvolvimento , Picea/crescimento & desenvolvimento , Calibragem , Modelos Biológicos , Densidade Demográfica
9.
Environ Pollut ; 137(3): 494-506, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16005761

RESUMO

Chamber experiments on juvenile trees have resulted in severe injury and accelerated loss of leaves along with reduced biomass production under chronically enhanced O3 levels. In contrast, the few studies conducted on adult forest trees in the field have reported low O3 sensitivity. In the present study, young beech in phytotrons was more sensitive to O3 than adult beech in the field, although employed O3 regimes were similar. The hypotheses tested were that: (1) differences in O3 uptake were caused by the ontogenetically higher stomatal conductance of young compared to adult trees, (2) the experimental settings in the phytotrons enhanced O3 uptake compared to field conditions, and (3) a low detoxification capacity contributes to the higher O3 sensitivity of the young trees. The higher O3 sensitivity of juvenile beech in the phytotrons is demonstrated to relate to both the experimental conditions and the physiological responsiveness inherent to tree age.


Assuntos
Poluentes Atmosféricos/farmacocinética , Fagus/crescimento & desenvolvimento , Fagus/metabolismo , Ozônio/farmacocinética , Ecologia/métodos , Monitoramento Ambiental/métodos , Fatores de Tempo , Vento
10.
Plant Biol (Stuttg) ; 7(6): 640-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16388467

RESUMO

In a two-year phytotron study, juvenile trees of European beech (Fagus sylvatica) and Norway spruce (Picea abies) were grown in mixture under ambient and twice ambient ozone (O3) and infected with the root pathogen Phytophthora citricola. We investigated the influence of O3 on the trees' susceptibility to the root pathogen and assessed, through a 15N-labelling experiment, the impact of both treatments (O3 exposure and infection) on belowground competitiveness. The hypotheses tested were that: (1) both P. citricola and O3 reduce the belowground competitiveness (in view of N acquisition), and (2) that susceptibility to P. citricola infection is reduced through acclimation to enhanced O3 exposure. Belowground competitiveness was quantified via cost/benefit relationships, i.e., the ratio of structural investment in roots relative to their uptake of 15N. Beech had a lower biomass acquisition and captured less 15N under enhanced O3 and P. citricola infection alone than spruce, whereas the latter species appeared to profit from the lower resource acquisition of beech in these treatments. Nevertheless, in the combined treatment, susceptibility to P. citricola of spruce was increased, while beech growth and 15N uptake were not further reduced below the levels found under the single treatments. Potential trade-offs between stress defence, growth performance, and associated nitrogen status are discussed for trees affected through O3 and/or pathogen infection. With respect to growth performance, it is concluded that O3 enhances susceptibility to the pathogen in spruce, but apparently raises the defence capacity in beech..


Assuntos
Aclimatação/efeitos dos fármacos , Fagus/metabolismo , Nitrogênio/metabolismo , Ozônio/farmacologia , Phytophthora/efeitos dos fármacos , Phytophthora/fisiologia , Picea/metabolismo , Doenças das Plantas/microbiologia , Biomassa , Ambiente Controlado , Fagus/efeitos dos fármacos , Fagus/microbiologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Ozônio/metabolismo , Picea/efeitos dos fármacos , Picea/microbiologia , Raízes de Plantas/microbiologia , Fatores de Tempo
11.
Plant Biol (Stuttg) ; 7(6): 728-36, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16388477

RESUMO

Plant growth largely depends on microbial community structure and function in the rhizosphere. In turn, microbial communities in the rhizosphere rely on carbohydrates provided by the host plant. This paper presents the first study on ozone effects in the plant-rhizosphere-bulk soil system of 4-year-old beech trees using outdoor lysimeters as a research platform. The lysimeters were filled with homogenized soil from the corresponding horizons of a forest site, thus minimizing field heterogeneity. Four lysimeters were treated with ambient ozone (1 x O3) and four with double ambient ozone concentrations (2 x O3; restricted to 150 ppb). In contrast to senescence, which was almost unaffected by ozone treatment, both the photochemical quantum yield of photosystem II (PSII) and leaf gas exchange were reduced (11 - 45 %) under the elevated O3 regime. However, due to large variation between the plants, no statistically significant O3 effect was found. Even though the amount of primary metabolites, such as sugar and starch, was not influenced by elevated O3 concentrations, the reduced photosynthetic performance was reflected in leaf biochemistry in the form of a reduction in soluble phenolic metabolites. The rhizosphere microbial community also responded to the O3 treatment. Both community structure and function were affected, with a tendency towards a lower diversity and a significant reduction in the potential nutrient turnover. In contrast, litter degradation was unaffected by the fumigation, indicating that in situ microbial functionality of the bulk soil did not change.


Assuntos
Fagus/efeitos dos fármacos , Fagus/microbiologia , Ozônio/farmacologia , Microbiologia do Solo , Metabolismo dos Carboidratos/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Fatores de Tempo
12.
Plant Biol (Stuttg) ; 7(6): 718-27, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16388476

RESUMO

The aim was to analyze functional changes in the mycorrhizosphere (MR) of juvenile spruce and beech grown in a mixture under ambient and twice ambient ozone and inoculated with the root pathogen Phytophthora citricola. The phytotron experiment was performed over two vegetation periods, adding the pathogen at the end of the first growing season. Root biomass data suggest that the combined treatment affected spruce more than beech and that the negative influence of ozone on stress tolerance against the root pathogen P. citricola was greater for spruce than for beech. In contrast, beech was more affected when the pathogen was the sole stressor. The functional soil parameter chosen for studies of MR soil samples was activity of extracellular enzymes. After the first year of ozone exposure, MR soil samples of both species showed increased activity of almost all measured enzymes (acid phosphatase, chitinase, beta-glucosidase, cellobiohydrolase) in the O3 treatment. Species-specific differences were observed, with a stronger effect of P. citricola on beech MR and a stronger ozone effect on spruce MR. In the second year, the effects of the combined treatment (ozone and P. citricola) were a significant increase in the activity of most enzymes (except cellobiohydrolase) for both tree species. The results indicated that responsiveness of MR soils towards ozone and P. citricola was related to the severity of infection of the plants and the reduction of belowground biomass, suggesting a strong, direct influence of plant stress on MR soil enzyme activity. Additional research is needed using different species and combined stresses to determine the broader ecological relevance of shifts in rhizosphere enzymes.


Assuntos
Atmosfera/química , Fagus/efeitos dos fármacos , Micorrizas/efeitos dos fármacos , Ozônio/farmacologia , Phytophthora/fisiologia , Picea/efeitos dos fármacos , Raízes de Plantas/microbiologia , Biomassa , Fagus/metabolismo , Fagus/microbiologia , Micorrizas/metabolismo , Picea/metabolismo , Picea/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Solo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA