Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Crohns Colitis ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747639

RESUMO

BACKGROUND AND AIMS: Epidemiological studies have shown that subnormal levels of vitamin D (25(OH)D) are associated with a more aggravated clinical course of ulcerative colitis (UC). Despite an increased focus on the therapeutic importance of vitamin D and vitamin D receptor (VDR) signaling, the mechanisms underlying the effects of the vitamin D-VDR axis on UC remain elusive. Therefore, we aimed to investigate whether exposure to active vitamin D (1,25(OH)2D3)/VDR signaling in human organoids could influence the maintenance of the colonic epithelium. METHODS: Intestinal VDR expression was studied by immunohistochemistry, RNA expression arrays, and single-cell RNA sequencing of colonic biopsy specimens obtained from patients with UC and healthy individuals. To characterize the functional and transcriptional effects of 1,25(OH)2D3, we used patient-derived colonic organoids. The dependency of VDR was assessed by knocking out the receptor with CRISPR/Cas9. RESULTS: Our results suggest that 1,25(OH)2D3/VDR stimulation supports differentiation of the colonic epithelium and that impaired 1,25(OH)2D3/VDR signaling thereby may compromise the structure of the intestinal epithelial barrier, leading to flares of UC. Furthermore, a transcriptional response to VDR activity was observed primarily in fully differentiated cells at the top of the colonic crypt, and this response was reduced during flares of UC. CONCLUSIONS: We identified an important role of vitamin D signaling in supporting differentiated cell states in the human colonic epithelium, and thereby maintenance of the intestinal barrier integrity. This makes the vitamin D-VDR signaling axis an interesting target for therapeutic efforts to achieve and maintain remission in patients with UC.

3.
Cancers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672458

RESUMO

Venetoclax, a BCL-2 inhibitor, has proven to be effective in several hematological malignancies, including mantle cell lymphoma (MCL). However, development of venetoclax resistance is inevitable and understanding its underlying molecular mechanisms can optimize treatment response. We performed a thorough genetic, epigenetic and transcriptomic analysis of venetoclax-sensitive and resistant MCL cell lines, also evaluating the role of the stromal microenvironment using human and murine co-cultures. In our model, venetoclax resistance was associated with abrogated TP53 activity through an acquired mutation and transcriptional downregulation leading to a diminished apoptotic response. Venetoclax-resistant cells also exhibited an upregulation of the PI3K/Akt pathway, and pharmacological inhibition of Akt and ERK with TIC-10 led to cell death in all venetoclax-resistant cell lines. Overall, we highlight the importance of targeted therapies, such as TIC-10, against venetoclax resistance-related pathways, which might represent future therapeutic prospects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA