Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14792, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926490

RESUMO

Idiopathic Pulmonary Fibrosis (IPF) is a debilitating and fatal lung disease characterized by the excessive formation of scar tissue and decline of lung function. Despite extensive research, only two FDA-approved drugs exist for IPF, with limited efficacy and relevant side effects. Thus, there is an urgent need for new effective therapies, whose discovery strongly relies on IPF animal models. Despite some limitations, the Bleomycin (BLM)-induced lung fibrosis mouse model is widely used for antifibrotic drug discovery and for investigating disease pathogenesis. The initial acute inflammation triggered by BLM instillation and the spontaneous fibrosis resolution that occurs after 3 weeks are the major drawbacks of this system. In the present study, we applied micro-CT technology to a longer-lasting, triple BLM administration fibrosis mouse model to define the best time-window for Nintedanib (NINT) treatment. Two different treatment regimens were examined, with a daily NINT administration from day 7 to 28 (NINT 7-28), and from day 14 to 28 (NINT 14-28). For the first time, we automatically derived both morphological and functional readouts from longitudinal micro-CT. NINT 14-28 showed significant effects on morphological parameters after just 1 week of treatment, while no modulations of these biomarkers were observed during the preceding 7-14-days period, likely due to persistent inflammation. Micro-CT morphological data evaluated on day 28 were confirmed by lung histology and bronchoalveolar lavage fluid (BALF) cells; Once again, the NINT 7-21 regimen did not provide substantial benefits over the NINT 14-28. Interestingly, both NINT treatments failed to improve micro-CT-derived functional parameters. Altogether, our findings support the need for optimized protocols in preclinical studies to expedite the drug discovery process for antifibrotic agents. This study represents a significant advancement in pulmonary fibrosis animal modeling and antifibrotic treatment understanding, with the potential for improved translatability through the concurrent structural-functional analysis offered by longitudinal micro-CT.


Assuntos
Bleomicina , Modelos Animais de Doenças , Microtomografia por Raio-X , Animais , Bleomicina/efeitos adversos , Camundongos , Indóis/farmacologia , Indóis/uso terapêutico , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/diagnóstico por imagem , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Fatores de Tempo
2.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L736-L753, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651940

RESUMO

Systemic sclerosis (SSc) with interstitial lung disease (SSc-ILD) lacks curative pharmacological treatments, thus necessitating effective animal models for candidate drug discovery. Existing bleomycin (BLM)-induced SSc-ILD mouse models feature spatially limited pulmonary fibrosis, spontaneously resolving after 28 days. Here, we present an alternative BLM administration approach in female C57BL/6 mice, combining oropharyngeal aspiration (OA) and subcutaneous mini-pump delivery (pump) of BLM to induce a sustained and more persistent fibrosis, while retaining stable skin fibrosis. A dose-finding study was performed with BLM administered as 10 µg (OA) +80 mg/kg (pump) (10 + 80), 10 + 100, and 15 + 100. Forty-two days after OA, micro-computed tomography (micro-CT) imaging and histomorphometric analyses showed that the 10 + 100 and 15 + 100 treatments induced significant alterations in lung micro-CT-derived readouts, Ashcroft score, and more severe fibrosis grades compared with saline controls. In addition, a marked reduction in hypodermal thickness was observed in the 15 + 100 group. A time-course characterization of the BLM 15 + 100 treatment at days 28, 35, and 42, including longitudinal micro-CT imaging, revealed progressing alterations in lung parameters. Lung histology highlighted a sustained fibrosis accompanied by a reduction in hypodermis thickness throughout the explored time-window, with a time-dependent increase in fibrotic biomarkers detected by immunofluorescence analysis. BLM-induced alterations were partly mitigated by Nintedanib treatment. Our optimized BLM delivery approach leads to extensive and persistent lung fibrotic lesions coupled with cutaneous fibrotic alterations: it thus represents a significant advance compared with current preclinical models of BLM-induced SSc-ILD.NEW & NOTEWORTHY This study introduces an innovative approach to enhance the overall performance of the mouse bleomycin (BLM)-induced model for systemic sclerosis with interstitial lung disease (SSc-ILD). By combining oropharyngeal aspiration and subcutaneous mini-pump delivery of BLM, our improved model leads to sustained lung fibrosis and stable skin fibrosis in female C57BL/6 mice. The optimized 15 + 100 treatment results in extensive and persistent lung fibrotic lesions and thus represents a significant improvement over existing preclinical models of BLM-induced SSc-ILD.


Assuntos
Bleomicina , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fibrose Pulmonar , Animais , Bleomicina/administração & dosagem , Bleomicina/toxicidade , Feminino , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Camundongos , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/complicações , Microtomografia por Raio-X , Pele/patologia , Pele/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/diagnóstico por imagem , Orofaringe/patologia , Orofaringe/efeitos dos fármacos , Orofaringe/diagnóstico por imagem , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/diagnóstico por imagem
3.
Respir Res ; 24(1): 126, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161569

RESUMO

Micro-computed tomography (µCT)-based imaging plays a key role in monitoring disease progression and response to candidate drugs in various animal models of human disease, but manual image processing is still highly time-consuming and prone to operator bias. Focusing on an established mouse model of bleomycin (BLM)-induced lung fibrosis we document, here, the ability of a fully automated deep-learning (DL)-based model to improve and speed-up lung segmentation and the precise measurement of morphological and functional biomarkers in both the whole lung and in individual lobes. µCT-DL whose results were overall highly consistent with those of more conventional, especially histological, analyses, allowed to cut down by approximately 45-fold the time required to analyze the entire dataset and to longitudinally follow fibrosis evolution and response to the human-use-approved drug Nintedanib, using both inspiratory and expiratory µCT. Particularly significant advantages of this µCT-DL approach, are: (i) its reduced experimental variability, due to the fact that each animal acts as its own control and the measured, operator bias-free biomarkers can be quantitatively compared across experiments; (ii) its ability to monitor longitudinally the spatial distribution of fibrotic lesions, thus eliminating potential confounding effects associated with the more severe fibrosis observed in the apical region of the left lung and the compensatory effects taking place in the right lung; (iii) the animal sparing afforded by its non-invasive nature and high reliability; and (iv) the fact that it can be integrated into different drug discovery pipelines with a substantial increase in both the speed and robustness of the evaluation of new candidate drugs. The µCT-DL approach thus lends itself as a powerful new tool for the precision preclinical monitoring of BLM-induced lung fibrosis and other disease models as well. Its ease of operation and use of standard imaging instrumentation make it easily transferable to other laboratories and to other experimental settings, including clinical diagnostic applications.


Assuntos
Aprendizado Profundo , Fibrose Pulmonar , Animais , Humanos , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/tratamento farmacológico , Microtomografia por Raio-X , Reprodutibilidade dos Testes , Bleomicina/toxicidade , Modelos Animais de Doenças
4.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L211-L227, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625471

RESUMO

The development of new drugs for idiopathic pulmonary fibrosis strongly relies on preclinical experimentation, which requires the continuous improvement of animal models and integration with in vivo imaging data. Here, we investigated the lung distribution of bleomycin (BLM) associated with the indocyanine green (ICG) dye by fluorescence imaging. A long-lasting lung retention (up to 21 days) was observed upon oropharyngeal aspiration (OA) of either ICG or BLM + ICG, with significantly more severe pulmonary fibrosis, accompanied by the progressive appearance of emphysema-like features, uniquely associated with the latter combination. More severe and persistent lung fibrosis, together with a progressive air space enlargement uniquely associated with the BLM + ICG group, was confirmed by longitudinal micro-computed tomography (CT) and histological analyses. Multiple inflammation and fibrosis biomarkers were found to be increased in the bronchoalveolar lavage fluid of BLM- and BLM + ICG-treated animals, but with a clear trend toward a much stronger increase in the latter group. Similarly, in vitro assays performed on macrophage and epithelial cell lines revealed a significantly more marked cytotoxicity in the case of BLM + ICG-treated mice. Also unique to this group was the synergistic upregulation of apoptotic markers both in lung sections and cell lines. Although the exact mechanism underlying the more intense lung fibrosis phenotype with emphysema-like features induced by BLM + ICG remains to be elucidated, we believe that this combination treatment, whose overall effects more closely resemble the human disease, represents a valuable alternative model for studying fibrosis development and for the identification of new antifibrotic compounds.


Assuntos
Enfisema , Fibrose Pulmonar Idiopática , Enfisema Pulmonar , Humanos , Camundongos , Animais , Bleomicina , Microtomografia por Raio-X , Pulmão/diagnóstico por imagem , Pulmão/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/patologia , Líquido da Lavagem Broncoalveolar , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/patologia , Enfisema/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Sci Rep ; 12(1): 9695, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690601

RESUMO

Micro-computed tomography (CT) imaging provides densitometric and functional assessment of lung diseases in animal models, playing a key role either in understanding disease progression or in drug discovery studies. The generation of reliable and reproducible experimental data is strictly dependent on a system's stability. Quality controls (QC) are essential to monitor micro-CT performance but, although QC procedures are standardized and routinely employed in clinical practice, detailed guidelines for preclinical imaging are lacking. In this work, we propose a routine QC protocol for in vivo micro-CT, based on three commercial phantoms. To investigate the impact of a detected scanner drift on image post-processing, a retrospective analysis using twenty-two healthy mice was performed and lung density histograms used to compare the area under curve (AUC), the skewness and the kurtosis before and after the drift. As expected, statistically significant differences were found for all the selected parameters [AUC 532 ± 31 vs. 420 ± 38 (p < 0.001); skewness 2.3 ± 0.1 vs. 2.5 ± 0.1 (p < 0.001) and kurtosis 4.2 ± 0.3 vs. 5.1 ± 0.5 (p < 0.001)], confirming the importance of the designed QC procedure to obtain a reliable longitudinal quantification of disease progression and drug efficacy evaluation.


Assuntos
Pneumopatias , Pulmão , Animais , Progressão da Doença , Pulmão/diagnóstico por imagem , Camundongos , Controle de Qualidade , Estudos Retrospectivos , Microtomografia por Raio-X/métodos
6.
PLoS One ; 17(6): e0270005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704641

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with no curative pharmacological treatment. The most used animal model of IPF for anti-fibrotic drug screening is bleomycin (BLM)-induced lung fibrosis. However, several issues have been reported: the balance among disease resolution, an appropriate time window for therapeutic intervention and animal welfare remain critical aspects yet to be fully elucidated. In this study, C57Bl/6 male mice were treated with BLM via oropharyngeal aspiration (OA) following either double or triple administration. The fibrosis progression was longitudinally assessed by micro-CT every 7 days for 4 weeks after BLM administration. Quantitative micro-CT measurements highlighted that triple BLM administration was the ideal dose regimen to provoke sustained lung fibrosis up to 28 days. These results were corroborated with lung histology and Bronchoalveolar Lavage Fluid cells. We have developed a mouse model with prolonged lung fibrosis enabling three weeks of a curative therapeutic window for the screening of putative anti-fibrotic drugs. Moreover, we have demonstrated the pivotal role of longitudinal micro-CT imaging in reducing the number of animals required per experiment in which each animal can be its own control. This approach permits a valuable decrease in costs and time to develop disease animal models.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Animais , Bleomicina/farmacologia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tecnologia , Microtomografia por Raio-X
7.
Sci Rep ; 11(1): 18513, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531421

RESUMO

Systemic sclerosis (SSc) is an autoimmune disease characterized by an excessive production and accumulation of collagen in the skin and internal organs often associated with interstitial lung disease (ILD). Its pathogenetic mechanisms are unknown and the lack of animal models mimicking the features of the human disease is creating a gap between the selection of anti-fibrotic drug candidates and effective therapies. In this work, we intended to pharmacologically validate a SSc-ILD model based on 1 week infusion of bleomycin (BLM) by osmotic minipumps in C57/BL6 mice, since it will serve as a tool for secondary drug screening. Nintedanib (NINT) has been used as a reference compound to investigate antifibrotic activity either for lung or skin fibrosis. Longitudinal Micro-CT analysis highlighted a significant slowdown in lung fibrosis progression after NINT treatment, which was confirmed by histology. However, no significant effect was observed on lung hydroxyproline content, inflammatory infiltrate and skin lipoatrophy. The modest pharmacological effect reported here could reflect the clinical outcome, highlighting the reliability of this model to better profile potential clinical drug candidates. The integrative approach presented herein, which combines longitudinal assessments with endpoint analyses, could be harnessed in drug discovery to generate more reliable, reproducible and robust readouts.


Assuntos
Indóis/uso terapêutico , Doenças Pulmonares Intersticiais/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Escleroderma Sistêmico/tratamento farmacológico , Animais , Bleomicina , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Indóis/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/patologia , Camundongos , Inibidores de Proteínas Quinases/administração & dosagem , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/patologia
8.
Pharmaceuticals (Basel) ; 14(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074058

RESUMO

Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses induced by mesenteric ischemia/reperfusion, while beneficial effects were granted by EphB4, acting as EphB/ephrin-B antagonist, in a murine model of Crohn's disease (CD). Accordingly, we now aim to evaluate the effects of UniPR1331, a pan-Eph/ephrin antagonist, in TNBS-induced colitis and to ascertain whether UniPR1331 effects can be attributed to A- or B-type signaling interference. The potential anti-inflammatory action of UniPR1331 was compared to those of the recombinant proteins EphA2, a purported EphA/ephrin-A antagonist, and of ephrin-A1-Fc and EphA2-Fc, supposedly activating forward and reverse EphA/ephrin-A signaling, in murine TNBS-induced colitis and in stimulated cultured mononuclear splenocytes. UniPR1331 antagonized the inflammatory responses both in vivo, mimicking EphB4 protection, and in vitro; EphA/ephrin-A proteins were inactive or only weakly effective. Our findings represent a further proof-of-concept that blockade of EphB/ephrin-B signaling is a promising pharmacological strategy for CD management and highlight UniPR1331 as a novel drug candidate, seemingly working through the modulation of immune responses.

9.
Front Pharmacol ; 10: 691, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297055

RESUMO

Besides their long-known critical role in embryonic growth and in cancer development and progression, erythropoietin-producing hepatocellular carcinoma type B (EphB) receptor tyrosine kinases and their ephrin-B ligands are involved in the modulation of immune responses and in remodeling and maintaining the integrity of the intestinal epithelial layer. These processes are critically involved in the pathogenesis of inflammatory-based disorders of the gut, like inflammatory bowel diseases (IBDs). Accordingly, our aim was to investigate the role of the EphB/ephrin-B system in intestinal inflammation by assessing the local and systemic effects produced by its pharmacological manipulation in 2,4,6-trinitrobenzenesulfonic acid (TNBS)- (Th1-dependent model) and dextran sulphate sodium (DSS)- (innate response model) induced colitis in mice. To this purpose, we administered chimeric Fc-conjugated proteins, allegedly able to uni-directionally activate either forward (ephrin-B1-Fc) or reverse (EphB1-Fc) signaling, and the soluble monomeric EphB4 extracellular domain protein, that, simultaneously interfering with both signaling pathways, acts as EphB/ephrin-B antagonist.The blockade of the EphB/ephrin-B forward signaling by EphB4 and EphB1-Fc was ineffective against DSS-induced colitis while it evoked remarkable beneficial effects against TNBS colitis: it counteracted all the evaluated inflammatory responses and the changes elicited on splenic T lymphocytes subpopulations, without preventing the appearance of a splice variant of ephrin-B2 gene elicited by the haptenating agent in the colon. Interestingly, EphB4, preferentially displacing EphB4/ephrin-B2 interaction over EphB1/ephrin-B1 binding, was able to promote Tumor Necrosis Factor alpha (TNFα) release by splenic mononuclear cells in vitro. On the whole, the collected results point to a potential role of the EphB/ephrin-B system as a pharmacological target in intestinal inflammatory disorders and suggest that the therapeutic efficacy of its blockade seemingly works through the modulation of immune responses, independent of the changes at the transcriptional and translational level of EphB4 and ephrin-B2 genes.

10.
Front Pharmacol ; 8: 809, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167641

RESUMO

The existence of a cholinergic anti-inflammatory pathway negatively modulating the inflammatory and immune responses in various clinical conditions and experimental models has long been postulated. In particular, the protective involvement of the vagus nerve and of nicotinic Ach receptors (nAChRs) has been proposed in intestinal inflammation and repeatedly investigated in DSS- and TNBS-induced colitis. However, the role of α7 nAChRs stimulation is still controversial and the potential contribution of α4ß2 nAChRs has never been explored in this experimental condition. Our aims were therefore to pharmacologically investigate the role played by both α7 and α4ß2 nAChRs in the modulation of the local and systemic inflammatory responses activated in TNBS-induced colitis in mice and to assess the involvement of the spleen in nicotinic responses. To this end, TNBS-exposed mice were sub-acutely treated with various subcutaneous doses of highly selective agonists (AR-R17779 and TC-2403) and antagonists (methyllycaconitine and dihydro-ß-erythroidine) of α7 and α4ß2 nAChRs, respectively, or with sulfasalazine 50 mg/kg per os and clinical and inflammatory responses were evaluated by means of biochemical, histological and flow cytometry assays. α4ß2 ligands evoked weak and contradictory effects, while α7 nAChR agonist AR-R17779 emerged as the most beneficial treatment, able to attenuate several local markers of colitis severity and to revert the rise in splenic T-cells and in colonic inflammatory cytokines levels induced by haptenization. After splenectomy, AR-R17779 lost its protective effects, demonstrating for the first time that, in TNBS-model of experimental colitis, the anti-inflammatory effect of exogenous α7 nAChR stimulation is strictly spleen-dependent. Our findings showed that the selective α7 nAChRs agonist AR-R17779 exerted beneficial effects in a model of intestinal inflammation characterized by activation of the adaptive immune system and that the spleen is essential to mediate this cholinergic protection.

11.
Shock ; 48(6): 681-689, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28472014

RESUMO

Mesenteric ischemia-reperfusion (I/R)-induced injury targets primarily endothelial and epithelial cells, leading to a cascade of inflammatory events, eventually culminating in life-threatening syndromes. Hitherto, the role of Eph, the largest family of tyrosine kinase receptors, and of their cell-bound ephrin ligands, whose interaction generates a bidirectional signaling, is still debated in I/R injury. The aim of the present work was therefore to investigate the effects produced by unidirectional activation of forward signaling (administration of chimeric protein ephrinA1-Fc), of reverse signaling (EphA2-Fc), or inhibition of both signals (monomeric EphA2 and the protein-protein interaction inhibitor UniPR1331) on the local and systemic inflammatory responses triggered by mesenteric I/R in mice.When administered at 200 µg/kg i.v., ephrin-A1-Fc prevented intestinal and lung I/R-induced injury, decreasing in the pulmonary district leukocytes recruitment, IL-1ß and TNFα levels, and EphA2 overexpression by mesenteric I/R. Blockade of Eph-ephrin signaling by equimolar EphA2 efficiently antagonized I/R-induced gut edema formation, an effect shared also by UniPR1331, mitigated lung mucosal injury, and counteracted the increase in pro-inflammatory cytokines levels. EphA2-Fc 180 µg/kg or equimolar Fc alone did not significantly modify the inflammatory responses to I/R.Our data suggest that the Eph-ephrin system is directly involved in the development of the acute inflammatory process activated in the gut by hypoxia-reoxygenation and in its amplification to distant organs, revealing that a fine pharmacological tuning of this signaling pathway may represent an attractive strategy to contain the I/R-induced inflammatory cascade.


Assuntos
Efrina-A1/farmacologia , Efrina-A2/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Traumatismo por Reperfusão , Transdução de Sinais/efeitos dos fármacos , Animais , Feminino , Masculino , Mesentério/metabolismo , Mesentério/patologia , Camundongos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
12.
FEMS Microbiol Ecol ; 92(12)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27604252

RESUMO

Ulcerative colitis (UC) is associated with a substantial alteration of specific gut commensals, some of which may be involved in microbiota-mediated protection. In this study, microbiota cataloging of UC patients by 16S rRNA microbial profiling revealed a marked reduction of bifidobacteria, in particular the Bifidobacterium bifidum species, thus suggesting that this taxon plays a biological role in the aetiology of UC. We investigated this further through an in vivo trial by testing the effects of oral treatment with B. bifidum PRL2010 in a wild-type murine colitis model. TNBS-treated mice receiving 10(9) cells of B. bifidum PRL2010 showed a marked reduction of all colitis-associated histological indices as well as maintenance of mucosal integrity as it was shown by the increase in the expression of many tight junction-encoding genes. The protective role of B. bifidum PRL2010, as well as its sortase-dependent pili, appears to be established through the induction of an innate immune response of the host. These results highlight the importance of B. bifidum as a microbial biomarker for UC, revealing its role in protection against experimentally induced colitis.


Assuntos
Bifidobacterium/isolamento & purificação , Colite Ulcerativa/microbiologia , Disbiose/microbiologia , Fímbrias Bacterianas/imunologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/microbiologia , Animais , Bifidobacterium/genética , Bifidobacterium/imunologia , Biomarcadores , Colite Ulcerativa/induzido quimicamente , Feminino , Microbioma Gastrointestinal/genética , Humanos , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Probióticos , RNA Ribossômico 16S/genética , Linfócitos T/imunologia
13.
Front Pharmacol ; 7: 68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047383

RESUMO

BACKGROUND AND AIMS: Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. MATERIALS AND METHODS: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. RESULTS: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. CONCLUSION: The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders.

14.
J Phys Chem B ; 113(16): 5369-75, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19334673

RESUMO

The ultraviolet-visible absorption spectrum of camptothecin (CPT) has been been recorded in aqueous solution at pH 5.3, where the equilibrium among the different CPT forms is shifted toward the lactonic one. Time-dependent density functional theory (TD-DFT) computations lead to a remarkable reproduction of the experimental spectrum only upon addition of explicit water molecules in interaction with specific moieties of the camptothecin molecule. Molecular dynamics (MD) simulations enforcing boundary periodic conditions for CPT embedded with 865 water molecules, with a force field derived from DFT computations, show that the experimental spectrum is due to the contributions of CPT molecules with different solvation patterns. A similar solvent effect is observed for several CPT derivatives, including the clinically relevant SN-38 and topotecan drugs. The quantitative agreement between TD-DFT/MD computations and experimental data allow us to identify specific spectroscopic signatures diagnostic of the drug environment and to develop procedures that can be used to monitor the drug-DNA/protein interaction.


Assuntos
Antineoplásicos/química , Camptotecina/química , Simulação por Computador , Modelos Químicos , Teoria Quântica , Conformação Molecular , Soluções , Espectrofotometria Ultravioleta , Fatores de Tempo , Água/química
15.
J Am Chem Soc ; 129(19): 6269-77, 2007 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-17444644

RESUMO

Electron attachment experiments are carried out on the beta-d-ribose molecule in the gas phase for the energy region around 8 eV, and clear fragmentation products are observed for different mass values. A computational analysis of the relevant dynamics is also carried out for the beta-d-ribose in both the furanosic and pyranosic form as gaseous targets around that energy range. The quantum scattering attributes obtained from the calculations reveal in both systems the presence of transient negative ions (TNIs). An analysis of the spatial features of the excess resonant electron, together with the computation and characterization of the target molecular normal modes, suggests possible break-up pathways of the initial, metastable molecular species.


Assuntos
Elétrons , Gases/química , Modelos Químicos , Modelos Moleculares , Ribose/química , Íons/química , Teoria Quântica
16.
Phys Chem Chem Phys ; 8(12): 1385-93, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16633620

RESUMO

Assessment of the perturbed matrix method (PMM) ability in reproducing valence UV absorption spectra is carried out on two model systems: 1,2,3-triazine in methanol solution and uracil in water solution. Results show that even using the simplest definition of the quantum center, i.e. the portion of the system explicitly treated quantum mechanically, PMM provides rather good results. This paper further confirms the possibility of using PMM as a theoretical-computational tool, complementary to other methodologies, for addressing the electronic properties in molecular systems of high complexity.


Assuntos
Triazinas/química , Uracila/química , Matemática , Metanol , Modelos Teóricos , Soluções , Espectrofotometria Ultravioleta , Termodinâmica
17.
J Am Chem Soc ; 127(44): 15429-36, 2005 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-16262406

RESUMO

The equilibria between the different forms of the topotecan anticancer drug have been studied at moderately acidic and physiological pH by an integrated computational tool rooted in the density functional theory and its time-dependent extension together with the polarizable continuum model. The results allow an unbiased selection between the different possible tautomeric forms and provide invaluable complements to experimental data. The ultraviolet-visible topotecan spectrum, recorded at moderately acidic pH, is accurately reproduced only by TD-DFT computations including solvent effects. Comparison of the experimental and calculated bands of the UV-vis spectrum at physiological pH indicates the presence of an equilibrium among different forms that is tuned by the microenvironment embedding the drug. The quantitative agreement between TD-DFT/PCM computations and experiments allows the identification of unequivocal spectroscopic signatures for different forms of topotecan.


Assuntos
Antineoplásicos/química , Topotecan/química , Concentração de Íons de Hidrogênio , Isomerismo , Modelos Moleculares , Soluções , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA