RESUMO
This is a systematic review and meta-analysis evaluating the uptake of cascade genetic testing for hereditary breast and ovarian cancer syndrome. Among 30 studies included for meta-analysis, the uptake of cascade genetic testing was 33% (95% CI 25%-42%), with higher uptake rates among females compared with male relatives, and among first-degree compared with second-degree relatives. These findings indicate suboptimal uptake of cascade genetic testing among people at risk for hereditary breast and ovarian cancer syndrome, representing a missed opportunity for cancer prevention and early detection. There is a need for interventions to improve uptake rates.
Assuntos
Testes Genéticos , Síndrome Hereditária de Câncer de Mama e Ovário , Feminino , Humanos , Masculino , Detecção Precoce de Câncer/métodos , Predisposição Genética para Doença , Testes Genéticos/métodos , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Síndrome Hereditária de Câncer de Mama e Ovário/diagnósticoRESUMO
OBJECTIVE: Cascade testing for hereditary cancer syndromes allows relatives to estimate cancer risk and pursue prevention and early detection strategies. The current paradigm relies on patient coordinated care, resulting in only one-third of relatives successfully completing testing. Studies suggest that team-based approaches, where clinicians facilitate testing, can increase uptake. As institutions consider implementing such programs, understanding patient characteristics associated with interest is crucial for resource allocation. We aim to assess interest in clinician-facilitated testing and evaluate barriers. METHODS: Patients with cancer-associated pathogenic variants seen at a gynecologic oncology clinic were offered clinician-facilitated cascade testing. Patient interest and demographic variables were recorded and patients that declined were interviewed regarding the decision. RESULTS: From 11/2023-4/2024, 139 patients were offered clinician-facilitated cascade testing. Median patient age was 43 years (IQR 17), 97 (69.8 %) self-identified as White and 101 (72.7 %) as non-Hispanic. Fifty-six (40.3 %) patients harbored a BRCA1 pathogenic variant, 37 (26.6 %) BRCA2, and 46 (33.1 %) other cancer-associated genes. Fifty-seven (41.0 %) patients expressed interest in the intervention. Interested patients were more likely to have been diagnosed in the prior year vs. patients who were not interested on univariate (OR 4.6, 95 % CI 2.0-10.2, P = 0.0002) and multivariable analyses (adjusted OR 3.8, 95 % CI 1.622-9.009, P = 0.0022). CONCLUSIONS: Our study demonstrates that patients are almost five time more likely to be interested in cascade genetic testing within the first year of diagnosis of a pathogenic variant. Given the utility of such programs and their resource requirements, targeting this population could maximize effectiveness and uptake of cascade services.
RESUMO
INTRODUCTION: In the USA, up to 95% of individuals harbouring cancer-predisposing germline pathogenic variants have not been identified despite recommendations for screening at the primary care level. METHODS AND ANALYSIS: Our primary objective is to use a two-arm, single-institution randomised controlled trial to compare the proportion of eligible patients that are recommended genetic testing for hereditary cancer syndromes using a digital tool versus clinician interview for genetic cancer risk assessment in an urban academic gynaecology clinic. New gynaecology patients will be consented and randomised 1:1 to either the intervention arm, in which a digital tool is used for genetic cancer risk assessment, or usual care, in which the clinician performs genetic cancer risk assessment. Individuals will be considered eligible for hereditary cancer syndrome genetic testing if criteria set forth by the National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology are met. Eligible patients are 18 years or older, speak and read English, have not yet undergone hereditary cancer genetic testing and have access to a smartphone. The study aims to enrol 50 patients in each arm to allow for 80% power with two-tailed alpha of 5% to detect a 20% difference in proportion of eligible patients recommended for genetic testing. The primary outcome is the proportion of eligible individuals recommended genetic testing in the digital tool arm versus usual care arm, analysed using the χ2 or Fisher's exact test as appropriate for sample size. The secondary outcome is completion of genetic testing, as well as exploration of patient factors, particularly social determinants of health, which may affect the receipt, utilisation and experience with genetic services. ETHICS AND DISSEMINATION: This study has been approved by the Weill Cornell Institutional Review Board (Protocol No. 21-11024123). Participants will be informed of the benefits and risks of participation prior to consent. Dissemination of data will be deidentified and conducted through academic conferences and journals. Patients identified to be eligible for genetic testing who did not receive counselling from their providers will be contacted; participants will not receive direct notification of trial results. REGISTRATION DETAILS: This trial is registered at clinicaltrials.gov (NCT05562778) in September 2022. PROTOCOL VERSION: This is protocol version 1, as of 22 May 2024. COUNTRIES OF RECRUITMENT AND RECRUITMENT STATUS: USA, currently recruiting. HEALTH CONDITIONS/PROBLEMS STUDIED: Genetic predisposition to cancers such as breast, ovarian, uterine and pancreatic. DEIDENTIFIED INDIVIDUAL CLINICAL TRIAL PARTICIPANT-LEVEL DATA IDP SHARING STATEMENT: IDP will not be shared. TRIAL REGISTRATION NUMBER: NCT05562778.
Assuntos
Testes Genéticos , Humanos , Testes Genéticos/métodos , Feminino , Medição de Risco/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/diagnósticoRESUMO
BACKGROUND: Low-dose CT screening can reduce lung cancer-related mortality. However, most screen-detected pulmonary abnormalities do not develop into cancer and it often remains challenging to identify malignant nodules, particularly among indeterminate nodules. We aimed to develop and assess prediction models based on radiological features to discriminate between benign and malignant pulmonary lesions detected on a baseline screen. METHODS: Using four international lung cancer screening studies, we extracted 2060 radiomic features for each of 16 797 nodules (513 malignant) among 6865 participants. After filtering out low-quality radiomic features, 642 radiomic and 9 epidemiological features remained for model development. We used cross-validation and grid search to assess three machine learning (ML) models (eXtreme Gradient Boosted Trees, random forest, least absolute shrinkage and selection operator (LASSO)) for their ability to accurately predict risk of malignancy for pulmonary nodules. We report model performance based on the area under the curve (AUC) and calibration metrics in the held-out test set. RESULTS: The LASSO model yielded the best predictive performance in cross-validation and was fit in the full training set based on optimised hyperparameters. Our radiomics model had a test-set AUC of 0.93 (95% CI 0.90 to 0.96) and outperformed the established Pan-Canadian Early Detection of Lung Cancer model (AUC 0.87, 95% CI 0.85 to 0.89) for nodule assessment. Our model performed well among both solid (AUC 0.93, 95% CI 0.89 to 0.97) and subsolid nodules (AUC 0.91, 95% CI 0.85 to 0.95). CONCLUSIONS: We developed highly accurate ML models based on radiomic and epidemiological features from four international lung cancer screening studies that may be suitable for assessing indeterminate screen-detected pulmonary nodules for risk of malignancy.
Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico , Detecção Precoce de Câncer , Radiômica , Tomografia Computadorizada por Raios X , Canadá , Nódulos Pulmonares Múltiplos/patologia , Aprendizado de Máquina , Estudos RetrospectivosRESUMO
BACKGROUND: Although lung cancer screening with low-dose computed tomography is rolling out in many areas of the world, differentiating indeterminate pulmonary nodules remains a major challenge. We conducted one of the first systematic investigations of circulating protein markers to differentiate malignant from benign screen-detected pulmonary nodules. METHODS: Based on 4 international low-dose computed tomography screening studies, we assayed 1078 protein markers using prediagnostic blood samples from 1253 participants based on a nested case-control design. Protein markers were measured using proximity extension assays, and data were analyzed using multivariable logistic regression, random forest, and penalized regressions. Protein burden scores (PBSs) for overall nodule malignancy and imminent tumors were estimated. RESULTS: We identified 36 potentially informative circulating protein markers differentiating malignant from benign nodules, representing a tightly connected biological network. Ten markers were found to be particularly relevant for imminent lung cancer diagnoses within 1 year. Increases in PBSs for overall nodule malignancy and imminent tumors by 1 standard deviation were associated with odds ratios of 2.29 (95% confidence interval: 1.95 to 2.72) and 2.81 (95% confidence interval: 2.27 to 3.54) for nodule malignancy overall and within 1 year of diagnosis, respectively. Both PBSs for overall nodule malignancy and for imminent tumors were substantially higher for those with malignant nodules than for those with benign nodules, even when limited to Lung Computed Tomography Screening Reporting and Data System (LungRADS) category 4 (P < .001). CONCLUSIONS: Circulating protein markers can help differentiate malignant from benign pulmonary nodules. Validation with an independent computed tomographic screening study will be required before clinical implementation.
Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Proteoma , Detecção Precoce de Câncer , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Pulmão/patologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologiaRESUMO
We evaluated the performance of rapid antigen (RAg) and antibody (RAb) microfluidic diagnostics with serial sampling of 71 participants at 6 visits over 2 months following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Rapid tests showed strong agreement with laboratory references (κAg = 81.0%; κAb = 87.8%). RAg showed substantial concordance to both virus growth in culture and PCR positivity 0-5 days since symptom onset (κAg-culture = 60.1% and κAg-PCR = 87.1%). PCR concordance to virus growth in culture was similar (κPCR-culture = 70.0%), although agreement between RAg and culture was better overall (κAg-culture = 45.5% vs κPCR-culture = 10.0%). Rapid antigen and antibody testing by microfluidic immunofluorescence platform are highly accurate for characterization of acute infection.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico , Microfluídica , Sensibilidade e Especificidade , Anticorpos , Reação em Cadeia da PolimeraseRESUMO
BACKGROUND: Guidelines for SARS-CoV-2 have relied on limited data on duration of viral infectiousness and correlation with COVID-19 symptoms and diagnostic testing. METHODS: We enrolled ambulatory adults with acute SARS-CoV-2 infection and performed serial measurements of COVID-19 symptoms, nasal swab viral RNA, nucleocapsid (N) and spike (S) antigens, and replication-competent SARS-CoV-2 by viral growth in culture. We determined average time from symptom onset to a first negative test result and estimated risk of infectiousness, as defined by positive viral growth in culture. RESULTS: Among 95 adults, median [interquartile range] time from symptom onset to first negative test result was 9 [5] days, 13 [6] days, 11 [4] days, and >19 days for S antigen, N antigen, culture growth, and viral RNA by RT-PCR, respectively. Beyond two weeks, virus growth and N antigen titers were rarely positive, while viral RNA remained detectable among half (26/51) of participants tested 21-30 days after symptom onset. Between 6-10 days from symptom onset, N antigen was strongly associated with culture positivity (relative risk=7.61, 95% CI: 3.01-19.22), whereas neither viral RNA nor symptoms were associated with culture positivity. During the 14 days following symptom onset, the presence of N antigen remained strongly associated (adjusted relative risk=7.66, 95% CI: 3.96-14.82) with culture positivity, regardless of COVID-19 symptoms. CONCLUSIONS: Most adults have replication-competent SARS-CoV-2 for 10-14 after symptom onset. N antigen testing is a strong predictor of viral infectiousness and may be a more suitable biomarker, rather than absence of symptoms or viral RNA, to discontinue isolation within two weeks from symptom onset.
Assuntos
COVID-19 , Adulto , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Estudos Longitudinais , Técnicas e Procedimentos Diagnósticos , RNA Viral , Teste para COVID-19RESUMO
PURPOSE: Lung cancer screening programs generate a high volume of low-dose computed tomography (LDCT) reports that contain valuable information, typically in a free-text format. High-performance named-entity recognition (NER) models can extract relevant information from these reports automatically for inter-radiologist quality control. METHODS: Using LDCT report data from a longitudinal lung cancer screening program (8,305 reports; 3,124 participants; 2006-2019), we trained a rule-based model and two bidirectional long short-term memory (Bi-LSTM) NER neural network models to detect clinically relevant information from LDCT reports. Model performance was tested using F1 scores and compared with a published open-source radiology NER model (Stanza) in an independent evaluation set of 150 reports. The top performing model was applied to a data set of 6,948 reports for an inter-radiologist quality control assessment. RESULTS: The best performing model, a Bi-LSTM NER recurrent neural network model, had an overall F1 score of 0.950, which outperformed Stanza (F1 score = 0.872) and a rule-based NER model (F1 score = 0.809). Recall (sensitivity) for the best Bi-LSTM model ranged from 0.916 to 0.991 for different entity types; precision (positive predictive value) ranged from 0.892 to 0.997. Test performance remained stable across time periods. There was an average of a 2.86-fold difference in the number of identified entities between the most and the least detailed radiologists. CONCLUSION: We built an open-source Bi-LSTM NER model that outperformed other open-source or rule-based radiology NER models. This model can efficiently extract clinically relevant information from lung cancer screening computerized tomography reports with high accuracy, enabling efficient audit and feedback to improve quality of patient care.
Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , Retroalimentação , Melhoria de Qualidade , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , RadiologistasRESUMO
OBJECTIVES: This real-world analysis describes treatment patterns, sequencing and clinical effectiveness, toxicities, and health utility outcomes in advanced-stage, incurable ALK-positive NSCLC patients across five different ALK-TKIs. MATERIALS AND METHODS: Clinicodemographic, treatment, and toxicity data were collected retrospectively in patients with advanced-stage ALK-positive NSCLC at Princess Margaret Cancer Centre. Patient-reported symptoms, toxicities, and health utilities were collected prospectively. RESULTS: Of 148 ALK-positive NSCLC patients seen July 2009-May 2021, median age was 58.9 years; 84 (57%) were female; 112 (76%) never-smokers; 54 (47%) Asian and 40 (35%) white; 139 (94%) received at least one ALK-TKI: crizotinib (n = 74; 54%) and alectinib (n = 61; 44%) were administered mainly as first-line ALK-TKI, ceritinib, brigatinib and lorlatinib were administered primarily after previous ALK-TKI failure. Median overall survival (OS) was 54.0 months; 31 (21%) patients died within two years of advanced-stage diagnosis. Treatment modifications were observed in 35 (47%) patients with crizotinib, 19 (61%) with ceritinib, 41 (39%) with alectinib, 9 (41%) with brigatinib and 8 (30%) with lorlatinib. Prevalence of dose modifications and self-reported toxicities were higher with early versus later generation ALK-TKIs (P<.05). The presence of early treatment modification was not negatively associated with progression-free survival (PFS) and OS analyses. CONCLUSION: Serial ALK-TKI sequencing approaches are viable therapeutic options that can extend quality of life and quantity-of-life, though a fifth of patients died within two years. No best single sequencing approach could be determined. Clinically relevant toxicities occurred across all ALK-TKIs. Treatment modifications due to toxicity may not necessarily compromise outcomes, allowing multiple approaches to deal with ALK-TKI toxicities.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Crizotinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Qualidade de Vida , Receptores Proteína Tirosina Quinases/genética , Estudos RetrospectivosRESUMO
A new N-alkynylated dithieno[3,2-b:2',3'-d]pyrrole (DTP) monomer was synthesized using a Buchwald-Hartwig amination of 3,3'-dibromo-2,2'-bithiophene with pent-4-yn-1-amine. The obtained monomer was investigated for the possibility of a pre-polymerization modification via Huisgen 1,3-dipolar cycloaddition ("click") reaction with azide-containing organic compounds. The synthesized N-alkynylated DTP monomer is soluble in a number of organic solvents and reacts with organic azides via "click" reactions in mild conditions, achieving high yields. The N-alkynylated DTP monomer and its "click"-modified derivative can be electropolymerized to form polymeric films. Herein, the synthesis and characterization of a "click" modified DTP monomer, its pre-modified derivative, and their corresponding polymers are described. The developed method is a facile route to synthesize a new generation of various N-functionalized DTP homopolymers.
RESUMO
OBJECTIVES: The ADAURA trial demonstrated the benefit of adjuvant osimertinib among patients with resected, early-stage, epidermal growth factor receptor-mutated (EGFRm) non-small cell lung cancer (NSCLC). To understand the potential population impact, it is critical to deduce the prevalence, management, and outcomes of this patient population in the real-world setting before use of adjuvant osimertinib. MATERIALS AND METHODS: Using PALEOS (Pan-cAnadian Lung cancEr Observational Study) data (2012-2019), a retrospective, multi-center, observational cohort study was conducted among patients with early-stage (IB-IIIA) resected NSCLC who had not received neoadjuvant therapy. Study outcomes included EGFRm prevalence, treatment patterns, recurrence outcomes, and overall and disease-free survival (OS/DFS). RESULTS: Among patients undergoing reflexive EGFRm testing by a pathologist at time of diagnosis irrespective of disease stage (N = 535), 23 % were EGFRm-positive; 15.9 % had common mutations and 5.6 % had uncommon mutations. Within the EGFRm-positive cohort (N = 156), mean age at diagnosis was 68 years, 65 % of patients were female, and 35 % were of Asian descent. At diagnosis, 48 %, 31 %, and 21 % had stage IB, II, or IIIA disease, respectively; 46 % received adjuvant therapy after resection. Half of patients experienced disease recurrence, typically involving distant sites; central nervous system metastasis varied from 12 % to 15.0 % across disease stages. EGFR tyrosine kinase inhibitors were the most commonly received therapy after first metastatic recurrence. Median OS (DFS) was not reached, 71.2 (22.8) months, and 50.1 (18.0) months among stage IB, II, and IIIA patients. Patients with uncommon EGFRm had a lower probability of survival than those with common EGFRm (2 years: 87 % vs 91 %-94 %; 4 years: 56 % vs 73 %-82 %). CONCLUSION: Approximately-one-quarter of patients with resected, early-stage NSCLC were EGFRm-positive in this study. These patients had high recurrence rates and suboptimal long-term survival after treatment with current therapies. New adjuvant treatments are warranted.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Feminino , Masculino , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Prevalência , Estadiamento de Neoplasias , Quimioterapia Adjuvante , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Canadá/epidemiologia , Receptores ErbB/genética , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Carcinoma de Pequenas Células do Pulmão/patologiaRESUMO
The lateral flow assay (LFA) is one of the most popular technologies on the point-of-care diagnostics market due to its low cost and ease of use, with applications ranging from pregnancy to environmental toxins to infectious disease. While the use of these tests is relatively straightforward, significant development time and effort are required to create tests that are both sensitive and specific. Workflows to guide the LFA development process exist but moving from target selection to an LFA that is ready for field testing can be labor intensive, resource heavy, and time consuming. To reduce the cost and the duration of the LFA development process, we introduce a novel development platform centered on the flexibility, speed, and throughput of an automated robotic liquid handling system. The system comprises LFA-specific hardware and software that enable large optimization experiments with discrete and continuous variables such as antibody pair selection or reagent concentration. Initial validation of the platform was demonstrated during development of a malaria LFA but was readily expanded to encompass development of SARS-CoV-2 and Mycobacterium tuberculosis LFAs. The validity of the platform, where optimization experiments are run directly on LFAs rather than in solution, was based on a direct comparison between the robotic system and a more traditional ELISA-like method. By minimizing hands-on time, maximizing experiment size, and enabling improved reproducibility, the robotic system improved the quality and quantity of LFA assay development efforts.
Assuntos
COVID-19/diagnóstico , Imunoensaio/instrumentação , Malária/diagnóstico , Testes Imediatos , Tuberculose/diagnóstico , Teste Sorológico para COVID-19/economia , Teste Sorológico para COVID-19/instrumentação , Desenho de Equipamento , Humanos , Imunoensaio/economia , Mycobacterium tuberculosis/isolamento & purificação , Plasmodium/isolamento & purificação , Testes Imediatos/economia , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Fatores de TempoRESUMO
Inexpensive, simple, rapid diagnostics are necessary for efficient detection, treatment, and mitigation of COVID-19. Assays for SARS-CoV2 using reverse transcription polymerase chain reaction (RT-PCR) offer good sensitivity and excellent specificity, but are expensive, slowed by transport to centralized testing laboratories, and often unavailable. Antigen-based assays are inexpensive and can be rapidly mass-produced and deployed at point-of-care, with lateral flow assays (LFAs) being the most common format. While various manufacturers have produced commercially available SARS-Cov2 antigen LFAs, access to validated tests remains difficult or cost prohibitive in low-and middle-income countries. Herein, we present a visually read open-access LFA (OA-LFA) using commercially-available antibodies and materials for the detection of SARS-CoV-2. The LFA yielded a Limit of Detection (LOD) of 4 TCID50/swab of gamma irradiated SARS-CoV-2 virus, meeting the acceptable analytical sensitivity outlined by in World Health Organization target product profile. The open-source architecture presented in this manuscript provides a template for manufacturers around the globe to rapidly design a SARS-CoV2 antigen test.
Assuntos
Antígenos Virais/imunologia , Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , COVID-19/virologia , Humanos , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/imunologia , Sensibilidade e EspecificidadeRESUMO
The global COVID-19 pandemic has created an urgent demand for large numbers of inexpensive, accurate, rapid, point-of-care diagnostic tests. Analyte-based assays are suitably rapid and inexpensive and can be rapidly mass-produced, but for sufficiently accurate performance, they require highly optimized antibodies and assay conditions. We used an automated liquid handling system, customized to handle arrays of lateral flow (immuno)assays (LFAs) in a high-throughput screen, to identify anti-nucleocapsid antibodies that will perform optimally in an LFA. We tested 1021 anti-nucleocapsid antibody pairs as LFA capture and detection reagents with the goal of highlighting pairs that have the greatest affinity for the nucleocapsid protein of SARS-CoV-2 within the LFA format. In contrast to traditional antibody screening methods (e.g., ELISA, bio-layer interferometry), the method described here integrates real-time reaction kinetics with transport in, and immobilization directly onto, nitrocellulose. We have identified several candidate antibody pairs that are suitable for further development of an LFA for SARS-CoV-2.
RESUMO
Severe acute respiratory coronavirus-2 (SARS-CoV-2) is a novel viral pathogen and therefore a challenge to accurately diagnose infection. Asymptomatic cases are common and so it is difficult to accurately identify infected cases to support surveillance and case detection. Diagnostic test developers are working to meet the global demand for accurate and rapid diagnostic tests to support disease management. However, the focus of many of these has been on molecular diagnostic tests, and more recently serologic tests, for use in primarily high-income countries. Low- and middle-income countries typically have very limited access to molecular diagnostic testing due to fewer resources. Serologic testing is an inappropriate surrogate as the early stages of infection are not detected and misdiagnosis will promote continued transmission. Detection of infection via direct antigen testing may allow for earlier diagnosis provided such a method is sensitive. Leading SARS-CoV-2 biomarkers include spike protein, nucleocapsid protein, envelope protein, and membrane protein. This research focuses on antibodies to SARS-CoV-2 spike protein due to the number of monoclonal antibodies that have been developed for therapeutic research but also have potential diagnostic value. In this study, we assessed the performance of antibodies to the spike glycoprotein, acquired from both commercial and private groups in multiplexed liquid immunoassays, with concurrent testing via a half-strip lateral flow assays (LFA) to indicate antibodies with potential in LFA development. These processes allow for the selection of pairs of high-affinity antispike antibodies that are suitable for liquid immunoassays and LFA, some of which with sensitivity into the low picogram range with the liquid immunoassay formats with no cross-reactivity to other coronavirus S antigens. Discrepancies in optimal ranking were observed with the top pairs used in the liquid and LFA formats. These findings can support the development of SARS-CoV-2 LFAs and diagnostic tools.
RESUMO
Rapid tests for SARS-COV-2 infection are important tools for pandemic control, but current rapid tests are based on proprietary designs and reagents. We report clinical validation results of an open-access lateral flow assay (OA-LFA) design using commercially available materials and reagents, along with RT-qPCR and commercially available comparators (BinaxNOW® and Sofia®). Adult patients with suspected COVID-19 based on clinical signs and symptoms, and with symptoms ≤7 days duration, underwent anterior nares (AN) sampling for the OA-LFA, Sofia®, BinaxNOW ™, and RT-qPCR, along with nasopharyngeal (NP) RT-qPCR. Results indicate a positive predictive agreement with NP sampling as 69% (60% -78%) OA-LFA, 74% (64% - 82%) Sofia®, and 82% (73% - 88%) BinaxNOW™. The implication for these results is that we provide an open-access LFA design that meets the minimum WHO target product profile for a rapid test, that virtually any diagnostic manufacturer could produce.
Assuntos
Antígenos Virais/análise , COVID-19/diagnóstico , Imunoensaio , SARS-CoV-2/metabolismo , Área Sob a Curva , COVID-19/virologia , Humanos , Nasofaringe/virologia , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/metabolismo , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/isolamento & purificação , Sensibilidade e EspecificidadeRESUMO
Detection of tuberculosis at the point-of-care (POC) is limited by the low sensitivity of current commercially available tests. We describe a diagnostic accuracy field evaluation of a prototype urine Tuberculosis Lipoarabinomannan Lateral Flow Assay (TB-LAM LFA) in both HIV-positive and HIV-negative patients using fresh samples with sensitivity and specificity as the measures of accuracy. This prototype combines a proprietary concentration system with a sensitive LFA. In a prospective study of 292 patients with suspected pulmonary tuberculosis in Uganda, the clinical sensitivity and specificity was compared against a microbiological reference standard including sputum Xpert MTB/RIF Ultra and solid and liquid culture. TB-LAM LFA had an overall sensitivity of 60% (95%CI 51-69%) and specificity of 80% (95%CI 73-85%). When comparing HIV-positive (N = 86) and HIV-negative (N = 206) patients, there was no significant difference in sensitivity (sensitivity difference 8%, 95%CI -11% to +24%, p = 0.4351) or specificity (specificity difference -9%, 95%CI -24% to +4%, p = 0.2051). Compared to the commercially available Alere Determine TB-LAM Ag test, the TB-LAM LFA prototype had improved sensitivity in both HIV-negative (difference 49%, 95%CI 37% to 59%, p<0.0001) and HIV-positive patients with CD4+ T-cell counts >200cells/µL (difference 59%, 95%CI 32% to 75%, p = 0.0009). This report is the first to show improved performance of a urine TB LAM test for HIV-negative patients in a high TB burden setting. We also offer potential assay refinement solutions that may further improve sensitivity and specificity.
Assuntos
Infecções por HIV/urina , Soropositividade para HIV/urina , Lipopolissacarídeos/urina , Tuberculose/urina , Adulto , Feminino , HIV/patogenicidade , Infecções por HIV/complicações , Infecções por HIV/microbiologia , Infecções por HIV/virologia , Soropositividade para HIV/microbiologia , Soropositividade para HIV/virologia , Humanos , Masculino , Testes Imediatos , Escarro/microbiologia , Escarro/virologia , Tuberculose/complicações , Tuberculose/microbiologia , Tuberculose/virologia , Uganda/epidemiologia , Adulto JovemRESUMO
Quasiclassical trajectory analysis is now a standard tool to analyze non-minimum energy pathway motion of organic reactions. However, due to the large amount of information associated with trajectories, quantitative analysis of the dynamic origin of reaction selectivity is complex. For the electrocyclic ring opening of cyclopropyl radical, more than 4000 trajectories were run showing that allyl radicals are formed through a mixture of disrotatory intrinsic reaction coordinate (IRC) motion as well as conrotatory non-IRC motion. Geometric, vibrational mode, and atomic velocity transition-state features from these trajectories were used for supervised machine learning analysis with classification algorithms. Accuracy >80% with a random forest model enabled quantitative and qualitative assessment of transition-state trajectory features controlling disrotatory IRC versus conrotatory non-IRC motion. This analysis revealed that there are two key vibrational modes where their directional combination provides prediction of IRC versus non-IRC motion.
RESUMO
The SARS-CoV-2 pandemic has created an unprecedented need for rapid diagnostic testing to enable the efficient treatment and mitigation of COVID-19. The primary diagnostic tool currently employed is reverse transcription polymerase chain reaction (RT-PCR), which can have good sensitivity and excellent specificity. Unfortunately, implementation costs and logistical problems with reagents during the global SARS-CoV-2 pandemic have hindered its universal on demand adoption. Lateral flow assays (LFAs) represent a class of diagnostic that, if sufficiently clinically sensitive, may fill many of the gaps in the current RT-PCR testing regime, especially in low- and middle-income countries (LMICs). To date, many serology LFAs have been developed, though none meet the performance requirements necessary for diagnostic use cases, primarily due to the relatively long delay between infection and seroconversion. However, on the basis of previously reported results from SARS-CoV-1, antigen-based SARS-CoV-2 assays may have significantly better clinical sensitivity than serology assays. To date, only a very small number of antigen-detecting LFAs have been developed. Development of a half-strip LFA is a useful first step in the development of any LFA format. In this work, we present a half-strip LFA using commercially available antibodies for the detection of SARS-CoV-2. We have tested this LFA in buffer and measured an LOD of 0.65 ng/mL (95% CI of 0.53 to 0.77 ng/mL) ng/mL with recombinant antigen using an optical reader with sensitivity equivalent to a visual read. Further development, including evaluating the appropriate sample matrix, will be required for this assay approach to be made useful in a point of care setting, though this half-strip LFA may serve as a useful starting point for others developing similar tests.