Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 156(2): 212-224, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594517

RESUMO

The corticostriatal circuitry and its glutamate-γ-aminobuturic acid (GABA) interactions play an essential role in regulating neuronal excitability during reward-seeking behavior. However, the contribution of GABAergic interneurons in the corticostriatal circuitry remains unclear. To investigate the role of GABAergic interneurons, we focused on parvalbumin-expressing fast-spiking interneurons (Pv-FSI) in the corticostriatal circuitry using the designer receptors exclusively activated by designer drugs approach in a Pv-Cre mouse model. We hypothesize that Pv-FSI activation elicits changes in cortical glutamate levels and reward-seeking behaviors. To determine molecular and behavioral effects of Pv-FSI, we performed microdialysis and operant conditioning tasks for sucrose and alcohol rewards. In addition, we also examined how alcohol reward itself affects Pv-FSI functioning. Interestingly, our microdialysis results demonstrate that alcohol exposure inhibits Pv-FSI functioning in the medial prefrontal cortex (mPFC) and this consequently can regulate glutamate levels downstream in the nucleus accumbens. For sucrose reward-seeking behaviors, Pv-FSI activation in the mPFC increases sucrose self-administration whereas it does not promote alcohol seeking. For alcohol rewards, however, Pv-FSI activation in the mPFC results in increased compulsive head entry in operant chambers during devaluation procedures. Overall, our results suggest that not only do Pv-FSI contribute to changes in the cortical microcircuit and reward-seeking behaviors but also that alcohol affects Pv-FSI neurotransmission. Therefore, Pv-FSI has prompted interest in their role in maintaining a balance in neuronal excitation/inhibition and in regulating reward-seeking processes such as compulsivity, all of which are important factors for excessive alcohol seeking.


Assuntos
Comportamento Animal/fisiologia , Interneurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Recompensa , Alcoolismo/metabolismo , Animais , Condicionamento Operante , Etanol/farmacologia , Masculino , Camundongos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Sacarose/farmacologia
2.
Proteomics ; 20(1): e1900266, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31814311

RESUMO

Dysfunction of glutamate neurotransmission in the nucleus accumbens (NAc) has been implicated in the pathophysiology of alcohol use disorders (AUD). Neurogranin (Ng) is exclusively expressed in the brain and mediates N-methyl-d-aspartate receptor (NMDAR) hypo-function by regulating the intracellular calcium-calmodulin (Ca2+ -CaM) pathway. Ng null mice (Ng-/- mice) demonstrate increased alcohol drinking compared to wild-type mice, while also showing less tolerance to the effect of alcohol. To identify the molecular mechanism related to alcohol seeking, both in vivo microdialysis and label-free quantification proteomics comparing Ng genotype and effects of alcohol treatment on the NAc are utilized. There is significant difference in glutamate and gamma-aminobutyric acid (GABA) neurotransmission between genotypes; however, alcohol administration normalizes both glutamate and GABA levels in the NAc. Using label-free proteomics, 427 protein expression changes are identified against alcohol treatment in the NAc among 4347 total proteins detected. Bioinformatics analyses reveal significant molecular differences in Ng null mice in response to acute alcohol treatment. Ingenuity pathway analysis found that the AKT network is altered significantly between genotypes, which may increase the sensitivity of alcohol in Ng null mice. The pharmacoproteomics results presented here illustrate a possible molecular basis of the alcohol sensitivity through Ng signaling in the NAc.


Assuntos
Etanol/farmacologia , Neurogranina/genética , Núcleo Accumbens/efeitos dos fármacos , Proteoma/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/farmacocinética , Depressores do Sistema Nervoso Central/farmacologia , Cromatografia Líquida/métodos , Etanol/administração & dosagem , Etanol/farmacocinética , Genótipo , Ácido Glutâmico/metabolismo , Masculino , Camundongos Knockout , Microdiálise/métodos , Neurogranina/metabolismo , Núcleo Accumbens/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Ácido gama-Aminobutírico/metabolismo
3.
Neuropharmacology ; 150: 91-99, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30902751

RESUMO

Glutamate dysregulation is known to contribute to many psychiatric disorders including schizophrenia. Aberrant cortico-striatal activity and therefore glutamate levels might be relevant to this disease characterized by reduced prepulse inhibition (PPI), however, the molecular and behavioral mechanism of the pathophysiology of schizophrenia remains unclear. The focus of this study was to contribute to the current understanding of the glutamate and neurogranin (Ng) pathway, in relation to the cortico-striatal pathology of schizophrenia using a mouse model. A variant of the Ng gene has been detected in people with schizophrenia, implicating maladaptation of cortical glutamate signaling and sensorimotor gating. To test Ng-mediated PPI regulation in the mouse model, we utilized Ng null mice, viral-mediated Ng expression, and genetics approaches. Our results demonstrate that lack of Ng in mice decreases PPI. Ng over-expression in the prefrontal cortex (PFC) increases PPI, while Ng expression in either the nucleus accumbens (NAc) or hippocampus induces no change in PPI. Using optogenetics and chemogenetics, we identified that cortico-striatal activation is involved in PPI regulation. Finally, pharmacological regulation of Ng using glutamate receptor inhibitors demonstrated altered PPI between genotypes. In this study, we have investigated the impact of Ng expression on sensorimotor gating. This study contributes to a better understanding of the glutamatergic theory of schizophrenia, opening novel therapeutic avenues that may lead to glutamatergic treatments to ameliorate the symptoms of schizophrenia.


Assuntos
Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Neurogranina/metabolismo , Filtro Sensorial/fisiologia , Estimulação Acústica , Animais , Camundongos , Camundongos Knockout , Vias Neurais/metabolismo , Neurogranina/genética , Reflexo de Sobressalto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA