Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
R Soc Open Sci ; 11(1): 230431, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204795

RESUMO

Osteochondral grafts are used for repair of focal osteochondral lesions. Autologous grafts are the gold standard treatment; however, limited graft availability and donor site morbidity restrict use. Therefore, there is a clinical need for different graft sources/materials which replicate natural cartilage function. Chitosan has been proposed for this application. The aim of this study was to assess the biomechanics and biotribology of a bioresorbable chitosan/chitosan-nano-hydroxyapatite osteochondral construct (OCC), implanted in an in vitro porcine knee experimental simulation model. The OCC implanted in different surgical positions (flush, proud and inverted) was compared to predicate grafts in current clinical use and a positive control consisting of a stainless steel graft implanted proud of the cartilage surface. After 3 h (10 800 cycles) wear simulation under a walking gait, subsidence occurred in all OCC samples irrespective of surgical positioning, but with no apparent loss of material and low meniscus wear. Half the predicate grafts exhibited delamination and scratching of the cartilage surfaces. No graft subsidence occurred in the positive controls but wear and deformation of the meniscus were apparent. Implanting a new chitosan-based OCC either optimally (flush), inverted or proud of the cartilage surface resulted in minimal wear, damage and deformation of the meniscus.

2.
Carbohydr Polym ; 282: 119126, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123750

RESUMO

An innovative approach was developed to engineer a multi-layered chitosan scaffold for osteochondral defect repair. A combination of freeze drying and porogen-leaching out methods produced a porous, bioresorbable scaffold with a distinct gradient of pore size (mean = 160-275 µm). Incorporation of 70 wt% nano-hydroxyapatite (nHA) provided additional strength to the bone-like layer. The scaffold showed instantaneous mechanical recovery under compressive loading and did not delaminate under tensile loading. The scaffold supported the attachment and proliferation of human mesenchymal stem cells (MSCs), with typical adherent cell morphology found on the bone layer compared to a rounded cell morphology on the chondrogenic layer. Osteogenic and chondrogenic differentiation of MSCs preferentially occurred in selected layers of the scaffold in vitro, driven by the distinct pore gradient and material composition. This scaffold is a suitable candidate for minimally invasive arthroscopic delivery in the clinic with potential to regenerate damaged cartilage and bone.


Assuntos
Quitosana , Durapatita , Células-Tronco Mesenquimais/citologia , Nanoestruturas , Alicerces Teciduais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese , Humanos , Células-Tronco Mesenquimais/metabolismo , Microesferas , Osteogênese , Poliésteres , Resistência à Tração
3.
ACS Appl Bio Mater ; 4(8): 5987-6004, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006929

RESUMO

Phosphate-based glasses (PBGs) are biomaterials that degrade under physiological conditions and can be modified to release various ions depending on end applications. This study utilized slow-degrading (P45:45P2O5-16CaO-24MgO-11Na2O-4Fe2O3, mol %) and comparatively faster degrading (P40:40P2O5-16CaO-24MgO-20Na2O, mol %) PBG microspheres with or without porosity, to evaluate the combined effect of chemical formulation and geometry on human mesenchymal stem cells (MSCs), a clinically relevant cell source for orthopedic applications. Scanning electron microscopy showed 2, 46, and 29% of P45 bulk (P45-B), P40 bulk (P40-B), and P40 porous (P40-P) microspheres, respectively, that had cracks or peeling off surfaces after 42 days of incubation in culture medium. Cytotoxicity assessment showed that glass debris released into the culture medium may interact with cells and affect their survival. Direct-contact cell experiments up to 42 days showed that P45-B microspheres did not sustain viable long-term cell cultures and did not facilitate extracellular matrix formation. On the other hand, P40-B microspheres enhanced alkaline phosphatase activity, calcium deposition, and collagen and osteocalcin production in MSCs. Introduction of porosity in P40 glass further enhanced these parameters and proliferation at later time points. The small pore windows (<5 µm wide) and interconnection (<10 µm wide) may have allowed limited cell penetration into the porous structures. P40-B and P40-P have potential for bone repair and reinforcement therapy based on their chemical formulation and porous geometry.


Assuntos
Células-Tronco Mesenquimais , Fosfatos , Materiais Biocompatíveis/química , Vidro/química , Humanos , Microesferas , Fosfatos/farmacologia
4.
J Colloid Interface Sci ; 566: 271-283, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006822

RESUMO

Titanate structures have been widely investigated as biomedical component surfaces due to their bioactive, osteoinductive and antibacterial properties. However, these surfaces are limited to Ti and its alloys, due to the nature of the chemical conversion employed. The authors present a new method for generating nanoporous titanate structures on alternative biomaterial surfaces, such as other metals/alloys, ceramics and polymers, to produce bioactive and/or antibacterial properties in a simple yet effective way. Wet chemical (NaOH; 5 M; 60 °C; 24 h) conversion of DC magnetron sputtered Ti surfaces on 316L stainless steel were investigated to explore effects of microstructure on sodium titanate conversion. It was found that the more equiaxed thin films (B/300) generated the thickest titanate structures (ca. 1.6 µm), which disagreed with the proposed hypothesis of columnar structures allowing greater NaOH ingress. All film parameters tested ultimately generated titanate structures, as confirmed via EDX, SEM, XPS, XRD, FTIR and Raman analyses. Additionally, the more columnar structures (NB/NH & B/NH) had a greater quantity of Na (ca. 26 at.%) in the top portion of the films, as confirmed via XPS, however, on average the Na content was consistent across the films (ca. 5-9 at.%). Film adhesion for the more columnar structures (ca. 42 MPa), even on polished substrates, were close to that of the FDA requirement for plasma-sprayed HA coatings (ca. 50 MPa). This study demonstrates the potential of these surfaces to be applied onto a wide variety of material types, even polymeric materials, due to the lower processing temperatures utilised, with the vision to generate bioactive and/or antibacterial properties on a plethora of bioinert materials.


Assuntos
Nanopartículas/química , Óxidos/química , Titânio/química , Teste de Materiais , Tamanho da Partícula , Porosidade , Propriedades de Superfície
5.
Biomater Sci ; 8(6): 1683-1694, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-31984995

RESUMO

A major challenge in orthopedics is the repair of large non-union bone fractures. A promising therapy for this indication is the use of biodegradable bioinspired biomaterials that stabilize the fracture site, relieve pain and initiate bone formation and healing. This study uses a multidisciplinary evaluation strategy to assess immunogenicity, allergenicity, bone responses and physicochemical properties of a novel biomaterial scaffold. Two-photon stereolithography generated personalized custom-built scaffolds with a repeating 3D structure of Schwarz Primitive minimal surface unit cell with a specific pore size of ∼400 µm from three different methacrylated poly(d,l-lactide-co-ε-caprolactone) copolymers with lactide to caprolactone monomer ratios of 16 : 4, 18 : 2 and 9 : 1. Using in vitro and in vivo assays for bone responses, immunological reactions and degradation dynamics, we found that copolymer composition influenced the scaffold physicochemical and biological properties. The scaffolds with the fastest degradation rate correlated with adverse cellular effects and mechanical stiffness correlated with in vitro osteoblast mineralization. The physicochemical properties also correlated with in vivo bone healing and immune responses. Overall these observations provide compelling support for these scaffolds for bone repair and illustrate the effectiveness of a promising multidisciplinary strategy with great potential for the preclinical evaluation of biomaterials.


Assuntos
Materiais Biomiméticos/farmacologia , Fraturas não Consolidadas/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Caproatos/química , Células Cultivadas , Dioxanos/química , Modelos Animais de Doenças , Feminino , Lactonas/química , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Cultura Primária de Células , Estereolitografia , Engenharia Tecidual
6.
J Child Health Care ; 24(3): 458-472, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31450963

RESUMO

There is an increasing number of shared decision-making (SDM) interventions in paediatrics. However, there is little consensus as to the best instruments to assess the feasibility and impact of these interventions. This narrative review aims to answer: (1) what feasibility, knowledge and decision-making instruments have been used to assess paediatric SDM interventions and (2) what are the psychometric properties of used decision-making instruments, guided by the 'consensus-based standards for the selection of health measurement instrument' criteria. We conducted a review of the peer-reviewed literature. We identified 23 studies that evaluated a paediatric intervention to facilitate SDM for a specific health decision. Eighteen studies assessed intervention feasibility, with a wide variability in assessment between studies. Twelve studies assessed objective knowledge, and four studies assessed subjective knowledge with all but one study aggregating correct responses. We identified nine decision-making instruments that had been assessed psychometrically, although few had been thoroughly evaluated. The Decisional Conflict Scale was the most commonly-used instrument and the only instrument evaluated in paediatrics. Our study revealed a lack of consistency in the instruments used to evaluate decision-making interventions in paediatrics, making it difficult to compare interventions. We provide several recommendations for researchers to improve the assessment of SDM interventions in paediatrics.


Assuntos
Tomada de Decisões , Pediatria , Psicometria , Inquéritos e Questionários/normas , Adolescente , Criança , Humanos , Pais/psicologia
7.
J Phys Chem Lett ; 11(1): 40-47, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31814416

RESUMO

An open question in the metal hydride community is whether there are simple, physics-based design rules that dictate the thermodynamic properties of these materials across the variety of structures and chemistry they can exhibit. While black box machine learning-based algorithms can predict these properties with some success, they do not directly provide the basis on which these predictions are made, therefore complicating the a priori design of novel materials exhibiting a desired property value. In this work we demonstrate how feature importance, as identified by a gradient boosting tree regressor, uncovers the strong dependence of the metal hydride equilibrium H2 pressure on a volume-based descriptor that can be computed from just the elemental composition of the intermetallic alloy. Elucidation of this simple structure-property relationship is valid across a range of compositions, metal substitutions, and structural classes exhibited by intermetallic hydrides. This permits rational targeting of novel intermetallics for high-pressure hydrogen storage (low-stability hydrides) by their descriptor values, and we predict a known intermetallic to form a low-stability hydride (as confirmed by density functional theory calculations) that has not yet been experimentally investigated.

8.
ACS Appl Mater Interfaces ; 11(17): 15436-15446, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30990301

RESUMO

Phosphate-based glasses (PBGs) are bioactive and fully degradable materials with tailorable degradation rates. PBGs can be produced as porous microspheres through a single-step process, using changes in their formulation and geometry to produce varying pore sizes and interconnectivity for use in a range of applications, including biomedical use. Calcium phosphate PBGs have recently been proposed as orthobiologics, based on their in vitro cytocompatibility and ion release profile. In this study, porous microspheres made of two PBG formulations either containing TiO2 (P40Ti) or without (P40) were implanted in vivo in a large animal model of bone defect. The biocompatibility and osteogenic potential of these porous materials were assessed 13 weeks postimplantation in sheep and compared to empty defects and autologous bone grafts used as negative and positive controls. Histological analysis showed marked differences between the two formulations, as lower trabeculae-like interconnection and higher fatty bone marrow content were observed in the faster degrading P40-implanted defects, while the slower degrading P40Ti material promoted dense interconnected tissue. Autologous bone marrow concentrate (BMC) was also incorporated within the P40 and P40Ti microspheres in some defects; however, no significant differences were observed in comparison to microspheres implanted alone. Both formulations induced the formation of a collagen-enriched matrix, from 20 to 40% for P40 and P40Ti2.5 groups, suggesting commitment toward the bone lineage. With the faster degrading P40 formulation, mineralization of the tissue matrix was observed both with and without BMC. Some lymphocyte-like cells and foreign body multinucleated giant cells were observed with P40Ti2.5, suggesting that this more durable formulation might be linked to an inflammatory response. In conclusion, these first in vivo results indicate that PBG microspheres could be useful candidates for bone repair and regenerative medicine strategies and highlight the role of material degradation in the process of tissue formation and maturation.


Assuntos
Materiais Biocompatíveis/química , Vidro/química , Microesferas , Fosfatos/química , Engenharia Tecidual , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Doenças Ósseas/patologia , Doenças Ósseas/terapia , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Modelos Animais de Doenças , Osteogênese/efeitos dos fármacos , Porosidade , Ovinos , Titânio/química , Microtomografia por Raio-X
9.
J Tissue Eng Regen Med ; 13(3): 396-405, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30666804

RESUMO

Phosphate-based glasses (PBGs) are ideal materials for regenerative medicine strategies because their composition, degradation rates, and ion release profiles can easily be controlled. Strontium has previously been found to simultaneously affect bone resorption and deposition. Therefore, by combining the inherent properties of resorbable PBG and therapeutic activity of strontium, these glasses could be used as a delivery device of therapeutic factors for the treatment of orthopaedic diseases such as osteoporosis. This study shows the cytocompatibility and osteogenic potential of PBGs where CaO is gradually replaced by SrO in the near invert glass system 40P2 O5 ·(16-x)CaO·20Na2 O·24MgO·xSrO (x = 0, 4, 8, 12, and 16 mol%). Direct seeding of MG63 cells onto glass discs showed no significant difference in cell metabolic activity and DNA amount measurement across the different formulations studied. Cell attachment and spreading was confirmed via scanning electron microscopy (SEM) imaging at Days 3 and 14. Alkaline phosphatase (ALP) activity was similarly maintained across the glass compositions. Follow-on studies explored the effect of each glass composition in microsphere conformation (size: 63-125 µm) on human mesenchymal stem cells (hMSCs) in 3D cultures, and analysis of cell metabolic activity and ALP activity showed no significant differences at Day 14 over the compositional range investigated, in line with the observations from MG63 cell culture studies. Environmental SEM and live cell imaging at Day 14 of hMSCs seeded on the microspheres showed cell attachment and colonisation of the microsphere surfaces, confirming these formulations as promising candidates for regenerative medicine strategies addressing compromised musculoskeletal/orthopaedic diseases.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Cálcio/farmacologia , Vidro/química , Microesferas , Fosfatos/farmacologia , Estrôncio/farmacologia , Fosfatase Alcalina/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura
10.
Carbohydr Polym ; 204: 59-67, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366543

RESUMO

This study aimed to explore the correlation between mechanical and structural properties of chitosan-agarose blend (Ch-Agrs) scaffolds. Porosity of Ch-Agrs scaffolds was constant at 93%, whilst pore sizes varied between 150 and 550 µm. Pore sizes of the blend scaffolds (150-300 µm) were significantly smaller than for either agarose or chitosan scaffolds alone (ca. 500 µm). Ch50-Agrs50 blend scaffold showed the highest compressive modulus and strength values (4.5 ± 0.4 and 0.35 ± 0.03 MPa) due to reduction in the pore size. The presence of agarose improved the stability of the blends in aqueous media. The increase in compressive properties and residual weight after the TGA test, combined with the reduction in the swelling percentage of the blend scaffolds suggested an interaction between chitosan and agarose via hydrogen bonding which was confirmed using FTIR analysis. All wet blend scaffolds exhibited instant recovery after full compression. This study shows the potential of Ch-Agrs scaffolds for repairing soft tissue.

11.
Sci Rep ; 8(1): 14530, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266971

RESUMO

Here we show a new and effective methodology for rapid/controllable porosification of thin-film ceramics, which may be applied in medical devices/electronics and membrane nano-filtration. Dense hydroxyapatite applied to Ti6Al4V by plasma-assisted PVD was electron-beam irradiated to induce flash melting/boiling. Deposited coatings contained amorphous and nano-crystalline/stoichiometric hydroxyapatite (~35 nm). Irradiation (voltages 13-29 kV) led to ablation (up to 45% mass loss) and average/maximum pore areas from (0.07-1.66)/(0.69-92.53) µm2, mimicking the human cortical bone. Vitrification above 1150 °C formed (~62-30 nm) crystallites of α-Tri Calcium Phosphate. Unique porosification resulted from irradiation-induced sub-surface boiling and limited thermal conductivity of hydroxyapatite, causing material to expand/explode through the more quickly solidified top surface. Commercially applicable, roughened Ti6Al4V exacerbated the heating and boiling explosion phenomenon in certain regions, producing an array of pore sizes. Scaffold-like morphologies were generated by interconnection of micron/sub-micron porosity, showing great potential for facile generation of a biomimetic surface treatment for osseointegration.


Assuntos
Materiais Biomiméticos/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Durapatita/química , Ligas , Materiais Revestidos Biocompatíveis/química , Osso Cortical/química , Elétrons , Humanos , Osseointegração , Porosidade , Titânio/química
12.
ACS Appl Mater Interfaces ; 10(31): 25972-25982, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30011175

RESUMO

The chemical formulation of phosphate-based glasses (PBGs) can be tailored to fit particular end applications such as bone tissue engineering. While most reports to date have evaluated the effect of PBG chemical formulation on bone cells, this study specifically explored the manufacturing process, the changes in physical and chemical properties of PBG particles after flame spheroidization, and subsequent effects on human mesenchymal stem cells (hMSCs), a prime cell type for regenerative medicine applications. Flame spheroidization involves feeding irregular PBG particles (microparticles, MP) into a hot flame, causing them to melt and mold into solid spherical PBG particles (microspheres, MS). The laser diffraction analysis showed an increase in the volume-weighted mean diameter of particles from 48 to 139 µm after spheroidization and also revealed changes in the chemical composition of smaller MS (< 45 µm in size), whereas MS in other size ranges did not show significantly different chemical composition compared to MP. Additionally, some air bubbles were entrapped inside particles during spheroidization, causing a 2% drop in relative density of MS. However, the packing density of MS was 30% higher than that of MP. Culture of hMSCs on the particles showed significant improvement in cell spreading on MS compared to that on MP and nearly 2 times higher cell metabolic activity after 7 days of culture, suggesting that MS provided a more favorable support and geometry for hMSC attachment and growth for tissue engineering.


Assuntos
Fosfatos/química , Proliferação de Células , Vidro , Humanos , Células-Tronco Mesenquimais , Microesferas , Engenharia Tecidual
13.
Carbohydr Polym ; 194: 328-338, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29801846

RESUMO

Transparent and flexible nanocomposite films with a range of Agarose to Cellulose Nano-Whisker (CNW) ratios were produced using never-dried CNWs. The incorporation of never-dried CNWs within Agarose played an important role in the surface roughness (Ra 7-15 nm) and light transparency of the films (from 84 to 90%). Surface induced crystallisation of Agarose by CNWs was also found with increasing percentage of crystallinity (up to 79%) for the nanocomposite films, where CNW acted as nucleating sites. The enhanced tensile strength (ca. 30% increase) and modulus (ca. 90% increase) properties of the nanocomposite films compared to the control Agarose film indicated the effectiveness of the nanowhiskers incorporation. The storage modulus of the nanocomposite films increased also to be tripled Agarose alone as the CNWs content reached 43%. The swelling kinetics of the nanocomposites revealed that addition of CNWs reduced the long-term swelling capacity and swelling rate of the nanocomposite.

14.
Acta Biomater ; 72: 396-406, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29604438

RESUMO

Orthobiologics is a rapidly advancing field utilising cell-based therapies and biomaterials to enable the body to repair and regenerate musculoskeletal tissues. This paper reports on a cost-effective flame spheroidisation process for production of novel porous glass microspheres from calcium phosphate-based glasses to encapsulate and deliver stem cells. Careful selection of the glass and pore-forming agent, along with a manufacturing method with the required processing window enabled the production of porous glass microspheres via a single-stage manufacturing process. The morphological and physical characterisation revealed porous microspheres with tailored surface and interconnected porosity (up to 76 ±â€¯5%) with average pore size of 55 ±â€¯8 µm and surface areas ranging from 0.34 to 0.9 m2 g-1. Furthermore, simple alteration of the processing parameters produced microspheres with alternate unique morphologies, such as with solid cores and surface porosity only. The tuneable porosity enabled control over their surface area, degradation profiles and hence ion release rates. Furthermore, cytocompatibility of the microspheres was assessed using human mesenchymal stem cells via direct cell culture experiments and analysis confirmed that they had migrated to within the centre of the microspheres. The novel microspheres developed have huge potential for tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This manuscript highlights a simple cost-effective one-step process for manufacturing porous calcium phosphate-based glass microspheres with varying control over surface pores and fully interconnected porosity via a flame spheroidisation process. Moreover, a simple alteration of the processing parameters can produce microspheres which have a solid core with surface pores only. The tuneable porosity enabled control over their surface area, degradation profiles and hence ion release rates. The paper also shows that stem cells not only attach and proliferate but more importantly migrate to within the core of the porous microspheres, highlighting applications for bone tissue engineering and regenerative medicine.


Assuntos
Fosfatos de Cálcio , Células Imobilizadas , Vidro/química , Teste de Materiais , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Microesferas , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Porosidade
15.
J Mech Behav Biomed Mater ; 82: 371-382, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29656232

RESUMO

The osteogenic ions Ca2+, P5+, Mg2+, and antimicrobial ion Ga3+ were homogenously dispersed into a 1.45 µm thick phosphate glass coating by plasma assisted sputtering onto commercially pure grade titanium. The objective was to deliver therapeutic ions in orthopaedic/dental implants such as cementeless endoprostheses or dental screws. The hardness 4.7 GPa and elastic modulus 69.7 GPa, of the coating were comparable to plasma sprayed hydroxyapatite/dental enamel, whilst superseding femoral cortical bone. To investigate the manufacturing challenge of translation from a target to vapour condensed coating, structural/compositional properties of the target (P51MQ) were compared to the coating (P40PVD) and a melt-quenched equivalent (P40MQ). Following condensation from P51MQ to P40PVD, P2O5 content reduced from 48.9 to 40.5 mol%. This depolymerisation and reduction in the P-O-P bridging oxygen content as determined by 31P NMR, FTIR and Raman spectroscopy techniques was attributed to a decrease in the P2O5 network former and increases in alkali/alkali-earth cations. P40PVD appeared denser (3.47 vs. 2.70 g cm-3) and more polymerised than it's compositionally equivalent P40MQ, showing that structure/ mechanical properties were affected by manufacturing route.


Assuntos
Gálio/química , Vidro/química , Teste de Materiais , Fenômenos Mecânicos , Fosfatos/química , Próteses e Implantes
16.
J Pediatr Health Care ; 32(2): 133-149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29066150

RESUMO

INTRODUCTION: Surgery in children can be difficult for patients and parents. We aimed to summarize pediatric patients' and parents' psychosocial experiences and needs in surgery. METHOD: We used the Ovid search engine and screened 877 abstracts across three databases to extract data on pediatric patients' and parents' surgical experiences. RESULTS: Our search yielded 11 eligible studies representing 1,307 children undergoing surgery and their parents. Children's adverse experiences included psychological and behavioral changes before, during, and after surgery (e.g., anxiety, eating disturbances). Parents commonly experienced psychological distress. Children's needs related to medical and health care services, whereas parents had high information needs. DISCUSSION: Children's adverse experiences can negatively affect medical outcomes. Children's experiences are inextricably linked to their parents' and can become negatively affected by their parents' adverse experiences. Patients and parents with previous hospitalizations and surgeries had worse surgical experiences, highlighting further research in the context of chronic illness.


Assuntos
Necessidades e Demandas de Serviços de Saúde , Pais/psicologia , Procedimentos Cirúrgicos Operatórios/psicologia , Criança , Humanos , Psicologia
17.
J Biomater Appl ; 32(7): 906-919, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29237353

RESUMO

Mesenchymal stem cells play a vital role in bone formation process by differentiating into osteoblasts, in a tissue that offers not a flat but a discontinuous three-dimensional (3D) topography in vivo. In order to understand how geometry may be affecting mesenchymal stem cells, this study explored the influence of 3D geometry on mesenchymal stem cell-fate by comparing cell growth, viability and osteogenic potential using monolayer (two-dimensional, 2D) with microsphere (3D) culture systems normalised to surface area. The results suggested lower cell viability and reduced cell growth in 3D. Alkaline phosphatase activity was higher in 3D; however, both collagen and mineral deposition appeared significantly lower in 3D, even after osteogenic supplementation. Also, there were signs of patchy mineralisation in 3D with or without osteogenic supplementation as early as day 7. These results suggest that the convex surfaces on microspheres and inter-particulate porosity may have led to variable cell morphology and fate within the 3D culture. This study provides deeper insights into geometrical regulation of mesenchymal stem cell responses applicable for bone tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese , Silicatos/química , Engenharia Tecidual/métodos , Adesão Celular , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Células-Tronco Mesenquimais/metabolismo , Microesferas , Osteoblastos/metabolismo , Tamanho da Partícula , Propriedades de Superfície
18.
J Tissue Eng ; 8: 2041731417719170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28794848

RESUMO

An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

19.
Biomed Mater ; 11(1): 015011, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26836023

RESUMO

The manufacture of 3D scaffolds with specific controlled porous architecture, defined microstructure and an adjustable degradation profile was achieved using two-photon polymerization (TPP) with a size of 2 × 4 × 2 mm(3). Scaffolds made from poly(D,L-lactide-co-ɛ-caprolactone) copolymer with varying lactic acid (LA) and ɛ -caprolactone (CL) ratios (LC16:4, 18:2 and 9:1) were generated via ring-opening-polymerization and photoactivation. The reactivity was quantified using photo-DSC, yielding a double bond conversion ranging from 70% to 90%. The pore sizes for all LC scaffolds were see 300 µm and throat sizes varied from 152 to 177 µm. In vitro degradation was conducted at different temperatures; 37, 50 and 65 °C. Change in compressive properties immersed at 37 °C over time was also measured. Variations in thermal, degradation and mechanical properties of the LC scaffolds were related to the LA/CL ratio. Scaffold LC16:4 showed significantly lower glass transition temperature (T g) (4.8 °C) in comparison with the LC 18:2 and 9:1 (see 32 °C). Rates of mass loss for the LC16:4 scaffolds at all temperatures were significantly lower than that for LC18:2 and 9:1. The degradation activation energies for scaffold materials ranged from 82.7 to 94.9 kJ mol(-1). A prediction for degradation time was applied through a correlation between long-term degradation studies at 37 °C and short-term studies at elevated temperatures (50 and 65 °C) using the half-life of mass loss (Time (M1/2)) parameter. However, the initial compressive moduli for LC18:2 and 9:1 scaffolds were 7 to 14 times higher than LC16:4 (see 0.27) which was suggested to be due to its higher CL content (20%). All scaffolds showed a gradual loss in their compressive strength and modulus over time as a result of progressive mass loss over time. The manufacturing process utilized and the scaffolds produced have potential for use in tissue engineering and regenerative medicine applications.


Assuntos
Implantes Absorvíveis , Ácido Láctico/química , Poliésteres/química , Polímeros/química , Impressão Tridimensional , Alicerces Teciduais , Força Compressiva/efeitos da radiação , Módulo de Elasticidade/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teste de Materiais , Fótons , Polímeros/síntese química , Polímeros/efeitos da radiação , Estresse Mecânico , Resistência à Tração/efeitos da radiação , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
20.
ACS Appl Mater Interfaces ; 7(49): 27362-72, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26523618

RESUMO

Quinternary phosphate-based glasses of up to 2.67 µm, deposited by radio-frequency magnetron sputtering, were degraded in distilled water and phosphate-buffered saline (PBS) to investigate their degradation characteristics. Magnetron-sputtered coatings have been structurally compared to their compositionally equivalent melt-quenched bulk glass counterparts. The coatings were found to have structurally variable surfaces to melt-quenched glass such that the respective bridging oxygen to nonbridging oxygen bonds were 34.2% to 65.8% versus 20.5% to 79.5%, forming metaphosphate (PO3)(-) (Q(2)) versus less soluble (P2O7)(4-) (Q(1)) and (PO4)(3-) (Q(0)), respectively. This factor led to highly soluble coatings, exhibiting a t(1/2) degradation dependence in the first 2 h in distilled water, followed by a more characteristic linear profile because the subsequent layers were less soluble. Degradation was observed to preferentially occur, forming voids characteristic of pitting corrosion, which was confirmed by the use of a focused ion beam. Coating degradation in PBS precipitated a (PO3)(-) metaphosphate, an X-ray amorphous layer, which remained adherent to the substrate and seemingly formed a protective diffusion barrier, which inhibited further coating degradation. The implications are that while compositionally similar, sputter-deposited coatings and melt-quenched glasses are structurally dissimilar, most notably, with regard to the surface layer. This factor has been attributed to surface etching of the as-deposited coating layer during deposition and variation in the thermal history between the processes of magnetron sputtering and melt quenching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA