Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Conserv Sci Pract ; 3(6): e410, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34230913

RESUMO

The virus that causes COVID-19 likely evolved in a mammalian host, possibly Old-World bats, before adapting to humans, raising the question of whether reverse zoonotic transmission to bats is possible. Wildlife management agencies in North America are concerned that the activities they authorize could lead to transmission of SARS-CoV-2 to bats from humans. A rapid risk assessment conducted in April 2020 suggested that there was a small but significant possibility that SARS-CoV-2 could be transmitted from humans to bats during summer fieldwork, absent precautions. Subsequent challenge studies in a laboratory setting have shed new information on these risks, as has more detailed information on human epidemiology and transmission. This inquiry focuses on the risk to bats from winter fieldwork, specifically surveys of winter roosts and handling of bats to test for white-nose syndrome or other research needs. We use an aerosol transmission model, with parameter estimates both from the literature and from formal expert judgment, to estimate the risk to three species of North American bats, as a function of several factors. We find that risks of transmission are lower than in the previous assessment and are notably affected by chamber volume and local prevalence of COVID-19. Use of facemasks with high filtration efficiency or a negative COVID-19 test before field surveys can reduce zoonotic risk by 65 to 88%.

2.
Ecology ; 102(5): e03315, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33630306

RESUMO

First-order dynamic occupancy models (FODOMs) are a class of state-space model in which the true state (occurrence) is observed imperfectly. An important assumption of FODOMs is that site dynamics only depend on the current state and that variations in dynamic processes are adequately captured with covariates or random effects. However, it is often difficult to understand and/or measure the covariates that generate ecological data, which are typically spatiotemporally correlated. Consequently, the non-independent error structure of correlated data causes underestimation of parameter uncertainty and poor ecological inference. Here, we extend the FODOM framework with a second-order Markov process to accommodate site memory when covariates are not available. Our modeling framework can be used to make reliable inference about site occupancy, colonization, extinction, turnover, and detection probabilities. We present a series of simulations to illustrate the data requirements and model performance. We then applied our modeling framework to 13 yr of data from an amphibian community in southern Arizona, USA. In this analysis, we found residual temporal autocorrelation of population processes for most species, even after accounting for long-term drought dynamics. Our approach represents a valuable advance in obtaining inference on population dynamics, especially as they relate to metapopulations.


Assuntos
Secas , Modelos Biológicos , Arizona , Ecossistema , Dinâmica Populacional
4.
Emerg Infect Dis ; 23(1): 1-6, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27983501

RESUMO

The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.


Assuntos
Tomada de Decisão Clínica/métodos , Doenças Transmissíveis Emergentes/epidemiologia , Técnicas de Apoio para a Decisão , Gerenciamento Clínico , Zoonoses/epidemiologia , Animais , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/transmissão , Humanos , Incerteza , Estados Unidos/epidemiologia , Zoonoses/prevenção & controle , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA