Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(23): 4567-4581, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37924208

RESUMO

Solution scattering techniques, such as small- and wide-angle X-ray scattering (SWAXS), provide valuable insights into the structure and dynamics of biological macromolecules in solution. In this study, we present an approach to accurately predict solution X-ray scattering profiles at wide angles from atomic models by generating high-resolution electron density maps. Our method accounts for the excluded volume of bulk solvent by calculating unique adjusted atomic volumes directly from the atomic coordinates. This approach eliminates the need for one of the free fitting parameters commonly used in existing algorithms, resulting in improved accuracy of the calculated SWAXS profile. An implicit model of the hydration shell is generated that uses the form factor of water. Two parameters, namely the bulk solvent density and the mean hydration shell contrast, are adjusted to best fit the data. Results using eight publicly available SWAXS profiles show high-quality fits to the data. In each case, the optimized parameter values show small adjustments demonstrating that the default values are close to the true solution. Disabling parameter optimization produces significantly more accurate predicted scattering profiles compared to the leading software. The algorithm is computationally efficient, comparable to the leading software and up to 10 times faster for large molecules. The algorithm is encoded in a command line script called denss.pdb2mrc.py and is available open source as part of the DENSS v1.7.0 software package. In addition to improving the ability to compare atomic models to experimental SWAXS data, these developments pave the way for increasing the accuracy of modeling algorithms using SWAXS data and decreasing the risk of overfitting.


Assuntos
Elétrons , Água , Difração de Raios X , Espalhamento a Baixo Ângulo , Solventes/química , Água/química
2.
Sci Adv ; 9(39): eadj3509, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756398

RESUMO

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base-paired intermediate to assume a triple-helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. This method may help to rapidly characterize and identify structural elements in nucleic acids in both equilibrium and time-resolved experiments.


Assuntos
Ácidos Nucleicos , RNA , Elétrons , Lasers
3.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398274

RESUMO

Solution scattering techniques, such as small and wide-angle X-ray scattering (SWAXS), provide valuable insights into the structure and dynamics of biological macromolecules in solution. In this study, we present an approach to accurately predict solution X-ray scattering profiles at wide angles from atomic models by generating high-resolution electron density maps. Our method accounts for the excluded volume of bulk solvent by calculating unique adjusted atomic volumes directly from the atomic coordinates. This approach eliminates the need for a free fitting parameter commonly used in existing algorithms, resulting in improved accuracy of the calculated SWAXS profile. An implicit model of the hydration shell is generated which uses the form factor of water. Two parameters, namely the bulk solvent density and the mean hydration shell contrast, are adjusted to best fit the data. Results using eight publicly available SWAXS profiles show high quality fits to the data. In each case, the optimized parameter values show small adjustments demonstrating that the default values are close to the true solution. Disabling parameter optimization results in a significant improvement of the calculated scattering profiles compared to the leading software. The algorithm is computationally efficient, showing more than tenfold reduction in execution time compared to the leading software. The algorithm is encoded in a command line script called denss.pdb2mrc.py and is available open source as part of the DENSS v1.7.0 software package (https://github.com/tdgrant1/denss). In addition to improving the ability to compare atomic models to experimental SWAXS data, these developments pave the way for increasing the accuracy of modeling algorithms utilizing SWAXS data while decreasing the risk of overfitting.

4.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292849

RESUMO

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.

5.
Lab Chip ; 23(13): 3016-3033, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294576

RESUMO

Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.


Assuntos
Lasers , Proteínas , Humanos , Cristalografia por Raios X , Proteínas/química , Injeções , NAD(P)H Desidrogenase (Quinona)
6.
Methods Enzymol ; 678: 145-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641207

RESUMO

Ab initio modeling methods have proven to be powerful means of interpreting solution scattering data. In the absence of atomic models, or complementary to them, ab initio modeling approaches can be used for generating low-resolution particle envelopes using only solution scattering profiles. Recently, a new ab initio reconstruction algorithm has been introduced to the scientific community, called DENSS. DENSS is unique among ab initio modeling algorithms in that it solves the inverse scattering problem, i.e., the 1D scattering intensities are directly used to determine the 3D particle density. The reconstruction of particle density has several advantages over conventional uniform density modeling approaches, including the ability to reconstruct a much wider range of particle types and the ability to visualize low-resolution density fluctuations inside the particle envelope. In this chapter we will discuss the theory behind this new approach, how to use DENSS, and how to interpret the results. Several examples with experimental and simulated data will be provided.


Assuntos
Algoritmos , Espalhamento a Baixo Ângulo
7.
Structure ; 31(2): 138-151.e5, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36630960

RESUMO

NendoU from SARS-CoV-2 is responsible for the virus's ability to evade the innate immune system by cleaving the polyuridine leader sequence of antisense viral RNA. Here we report the room-temperature structure of NendoU, solved by serial femtosecond crystallography at an X-ray free-electron laser to 2.6 Å resolution. The room-temperature structure provides insight into the flexibility, dynamics, and other intrinsic properties of NendoU, with indications that the enzyme functions as an allosteric switch. Functional studies examining cleavage specificity in solution and in crystals support the uridine-purine cleavage preference, and we demonstrate that enzyme activity is fully maintained in crystal form. Optimizing the purification of NendoU and identifying suitable crystallization conditions set the benchmark for future time-resolved serial femtosecond crystallography studies. This could advance the design of antivirals with higher efficacy in treating coronaviral infections, since drugs that block allosteric conformational changes are less prone to drug resistance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cristalografia por Raios X , Temperatura , Elétrons , Lasers
8.
Biophys Rep (N Y) ; 2(4): 100081, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36425668

RESUMO

With advances in X-ray free-electron lasers (XFELs), serial femtosecond crystallography (SFX) has enabled the static and dynamic structure determination for challenging proteins such as membrane protein complexes. In SFX with XFELs, the crystals are typically destroyed after interacting with a single XFEL pulse. Therefore, thousands of new crystals must be sequentially introduced into the X-ray beam to collect full data sets. Because of the serial nature of any SFX experiment, up to 99% of the sample delivered to the X-ray beam during its "off-time" between X-ray pulses is wasted due to the intrinsic pulsed nature of all current XFELs. To solve this major problem of large and often limiting sample consumption, we report on improvements of a revolutionary sample-saving method that is compatible with all current XFELs. We previously reported 3D-printed injection devices coupled with gas dynamic virtual nozzles (GDVNs) capable of generating samples containing droplets segmented by an immiscible oil phase for jetting crystal-laden droplets into the path of an XFEL. Here, we have further improved the device design by including metal electrodes inducing electrowetting effects for improved control over droplet generation frequency to stimulate the droplet release to matching the XFEL repetition rate by employing an electrical feedback mechanism. We report the improvements in this electrically triggered segmented flow approach for sample conservation in comparison with a continuous GDVN injection using the microcrystals of lysozyme and 3-deoxy-D-manno-octulosonate 8-phosphate synthase and report the segmented flow approach for sample injection applied at the Macromolecular Femtosecond Crystallography instrument at the Linear Coherent Light Source for the first time.

9.
J Appl Crystallogr ; 55(Pt 5): 1116-1124, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36249494

RESUMO

Small-angle scattering (SAS) probes the size and shape of particles at low resolution through the analysis of the scattering of X-rays or neutrons passing through a solution of particles. One approach to extracting structural information from SAS data is the indirect Fourier transform (IFT). The IFT approach parameterizes the real-space pair distribution function [P(r)] of a particle using a set of basis functions, which simultaneously determines the scattering profile [I(q)] using corresponding reciprocal-space basis functions. This article presents an extension of an IFT algorithm proposed by Moore [J. Appl. Cryst. (1980), 13, 168-175] which used a trigonometric series to describe the basis functions, where the real-space and reciprocal-space basis functions are Fourier mates. An equation is presented relating the Moore coefficients to the intensities of the SAS profile at specific positions, as well as a series of new equations that describe the size and shape parameters of a particle from this distinct set of intensity values. An analytical real-space regularizer is derived to smooth the P(r) curve and ameliorate systematic deviations caused by series termination. Regularization is commonly used in IFT methods though not described in Moore's original approach, which is particularly susceptible to such effects. The algorithm is provided as a script, denss.f it_data.py, as part of the DENSS software package for SAS, which includes both command line and interactive graphical interfaces. Results of the program using experimental data show that it is as accurate as, and often more accurate than, existing tools.

10.
PLoS One ; 17(8): e0267370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35913965

RESUMO

Francisella tularensis is an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable. F. tularensis outer membrane protein A (FopA) is a well-studied virulence determinant and protective antigen against tularemia. It is a major outer membrane protein (Omp) of F. tularensis. However, FopA-based therapeutic intervention is hindered due to lack of complete structural information for membrane localized mature FopA. In our study, we established recombinant expression, monodisperse purification, crystallization and X-ray diffraction (~6.5 Å) of membrane localized mature FopA. Further, we performed bioinformatics and biophysical experiments to unveil its structural organization in the outer membrane. FopA consists of 393 amino acids and has less than 40% sequence identity to known bacterial Omps. Using comprehensive sequence alignments and structure predictions together with existing partial structural information, we propose a two-domain organization for FopA. Circular dichroism spectroscopy and heat modifiability assay confirmed FopA has a ß-barrel domain consistent with alphafold2's prediction of an eight stranded ß-barrel at the N-terminus. Small angle X-ray scattering (SAXS) and native-polyacrylamide gel electrophoresis revealed FopA purified in detergent micelles is predominantly dimeric. Molecular density derived from SAXS at 31 Å shows putative dimeric N-terminal ß-barrels surrounded by detergent corona and connected to C-terminal domains via flexible linker. Disorder analysis predicts N- and C-terminal domains are interspersed by a long intrinsically disordered region and alphafold2 predicts this region to be largely unstructured. Taken together, we propose a dimeric, two-domain organization of FopA in the outer membrane: the N-terminal ß-barrel is membrane embedded, provides dimerization interface and tethers to membrane extrinsic C-terminal domain via long flexible linker. Structure determination of membrane localized mature FopA is essential to understand its role in pathogenesis and develop anti-tularemia therapeutics. Our results pave the way towards it.


Assuntos
Francisella tularensis , Tularemia , Detergentes , Humanos , Espalhamento a Baixo Ângulo , Tularemia/microbiologia , Difração de Raios X
11.
Nat Commun ; 12(1): 1762, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741910

RESUMO

Time-resolved studies of biomacromolecular crystals have been limited to systems involving only minute conformational changes within the same lattice. Ligand-induced changes greater than several angstroms, however, are likely to result in solid-solid phase transitions, which require a detailed understanding of the mechanistic interplay between conformational and lattice transitions. Here we report the synchronous behavior of the adenine riboswitch aptamer RNA in crystal during ligand-triggered isothermal phase transitions. Direct visualization using polarized video microscopy and atomic force microscopy shows that the RNA molecules undergo cooperative rearrangements that maintain lattice order, whose cell parameters change distinctly as a function of time. The bulk lattice order throughout the transition is further supported by time-resolved diffraction data from crystals using an X-ray free electron laser. The synchronous molecular rearrangements in crystal provide the physical basis for studying large conformational changes using time-resolved crystallography and micro/nanocrystals.


Assuntos
Conformação de Ácido Nucleico , Transição de Fase , RNA/química , Riboswitch , Adenina/química , Aptâmeros de Nucleotídeos/química , Cristalografia por Raios X , Microscopia de Força Atômica/métodos , Microscopia de Polarização/métodos , Modelos Moleculares , Imagem com Lapso de Tempo/métodos
14.
Nat Commun ; 10(1): 5021, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685819

RESUMO

The world's first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.


Assuntos
Elétrons , Lasers , Proteínas de Membrana/química , Cristalografia , Cianobactérias/metabolismo , Modelos Moleculares , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/isolamento & purificação , Eletricidade Estática , Síncrotrons , Thermosynechococcus , Raios X
15.
J Appl Crystallogr ; 52(Pt 5): 997-1008, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636518

RESUMO

The role of surface wetting properties and their impact on the performance of 3D printed microfluidic droplet generation devices for serial femtosecond crystallography (SFX) are reported. SFX is a novel crystallography method enabling structure determination of proteins at room temperature with atomic resolution using X-ray free-electron lasers (XFELs). In SFX, protein crystals in their mother liquor are delivered and intersected with a pulsed X-ray beam using a liquid jet injector. Owing to the pulsed nature of the X-ray beam, liquid jets tend to waste the vast majority of injected crystals, which this work aims to overcome with the delivery of aqueous protein crystal suspension droplets segmented by an oil phase. For this purpose, 3D printed droplet generators that can be easily customized for a variety of XFEL measurements have been developed. The surface properties, in particular the wetting properties of the resist materials compatible with the employed two-photon printing technology, have so far not been characterized extensively, but are crucial for stable droplet generation. This work investigates experimentally the effectiveness and the long-term stability of three different surface treatments on photoresist films and glass as models for our 3D printed droplet generator and the fused silica capillaries employed in the other fluidic components of an SFX experiment. Finally, the droplet generation performance of an assembly consisting of the 3D printed device and fused silica capillaries is examined. Stable and reproducible droplet generation was achieved with a fluorinated surface coating which also allowed for robust downstream droplet delivery. Experimental XFEL diffraction data of crystals formed from the large membrane protein complex photosystem I demonstrate the full compatibility of the new injection method with very fragile membrane protein crystals and show that successful droplet generation of crystal-laden aqueous droplets intersected by an oil phase correlates with increased crystal hit rates.

16.
J Synchrotron Radiat ; 26(Pt 4): 967-979, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274418

RESUMO

Dissociation of transforming growth factor beta-1 (TGFß-1) from the inhibitory protein latency-associated peptide (LAP) can occur from low doses of X-ray irradiation of the LAP-TGFß-1 complex, resulting in the activation of TGFß-1, and can have health-related consequences. Using the tools and knowledge developed in the study of radiation damage in the crystallographic setting, small-angle X-ray scattering (SAXS) and complementary techniques suggest an activation process that is initiated but not driven by the initial X-ray exposure. LAP is revealed to be extended when not bound to TGFß-1 and has a different structural conformation compared to the bound state. These studies pave the way for the structural understanding of systems impacted at therapeutic X-ray doses and show the potential impact of radiation damage studies beyond their original intent.


Assuntos
Peptídeos/química , Precursores de Proteínas/química , Fator de Crescimento Transformador beta1/química , Fator de Crescimento Transformador beta/química , Raios X , Relação Dose-Resposta à Radiação , Humanos , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
17.
18.
Nature ; 569(7755): 284-288, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019306

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.


Assuntos
Elétrons , Lasers , Modelos Moleculares , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Acetamidas/química , Acetamidas/metabolismo , Sequência de Aminoácidos , Antidepressivos/química , Antidepressivos/metabolismo , Cristalização , Humanos , Indenos/química , Indenos/metabolismo , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Simulação de Acoplamento Molecular , Mutação , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/genética , Receptor 5-HT2C de Serotonina/química , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Proc Natl Acad Sci U S A ; 116(9): 3572-3577, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808749

RESUMO

Cytochrome c oxidase (CcO) reduces dioxygen to water and harnesses the chemical energy to drive proton translocation across the inner mitochondrial membrane by an unresolved mechanism. By using time-resolved serial femtosecond crystallography, we identified a key oxygen intermediate of bovine CcO. It is assigned to the PR-intermediate, which is characterized by specific redox states of the metal centers and a distinct protein conformation. The heme a3 iron atom is in a ferryl (Fe4+ = O2-) configuration, and heme a and CuB are oxidized while CuA is reduced. A Helix-X segment is poised in an open conformational state; the heme a farnesyl sidechain is H-bonded to S382, and loop-I-II adopts a distinct structure. These data offer insights into the mechanism by which the oxygen chemistry is coupled to unidirectional proton translocation.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/química , Ferro/química , Oxigênio/química , Animais , Catálise , Domínio Catalítico , Bovinos , Cobre/química , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/genética , Oxirredução , Conformação Proteica
20.
J Phys Chem Lett ; 10(3): 441-446, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30566358

RESUMO

X-ray free electron lasers (XFELs) provide ultrashort intense X-ray pulses suitable to probe electron dynamics but can also induce a multitude of nonlinear excitation processes. These affect spectroscopic measurements and interpretation, particularly for upcoming brighter XFELs. Here we identify and discuss the limits to observing classical spectroscopy, where only one photon is absorbed per atom for a Mn2+ in a light element (O, C, H) environment. X-ray emission spectroscopy (XES) with different incident photon energies, pulse intensities, and pulse durations is presented. A rate equation model based on sequential ionization and relaxation events is used to calculate populations of multiply ionized states during a single pulse and to explain the observed X-ray induced spectral lines shifts. This model provides easy estimation of spectral shifts, which is essential for experimental designs at XFELs and illustrates that shorter X-ray pulses will not overcome sequential ionization but can reduce electron cascade effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA