Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immun Inflamm Dis ; 5(4): 480-492, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28681454

RESUMO

INTRODUCTION: Hyporesponsiveness of human lamina propria immune cells to microbial and nutritional antigens represents one important feature of intestinal homeostasis. It is at least partially mediated by low expression of the innate response receptors CD11b, CD14, CD16 as well as the cystine-glutamate transporter xCT on these cells. Milieu-specific mechanisms leading to the down-regulation of these receptors on circulating monocytes, the precursor cells of resident macrophages, are mostly unknown. METHODS: Here, we addressed the question whether the short chain fatty acid n-butyrate, a fermentation product of the mammalian gut microbiota exhibiting histone deacetylase inhibitory activity, is able to modulate expression of these receptors in human circulating monocytes. RESULTS: Exposure to n-butyrate resulted in the downregulation of CD11b, CD14, as well as CD16 surface expression on circulating monocytes. XCT transcript levels in circulating monocytes were also reduced following exposure to n-butyrate. Importantly, treatment resulted in the downregulation of protein and gene expression of the transcription factor PU.1, which was shown to be at least partially required for the expression of CD16 in circulating monocytes. PU.1 expression in resident macrophages in situ was observed to be substantially lower in healthy when compared to inflamed colonic mucosa. CONCLUSIONS: In summary, the intestinal microbiota may support symbiosis with the human host organism by n-butyrate mediated downregulation of protein and gene expression of innate response receptors as well as xCT on circulating monocytes following recruitment to the lamina propria. Downregulation of CD16 gene expression may at least partially be caused at the transcriptional level by the n-butyrate mediated decrease in expression of the transcription factor PU.1 in circulating monocytes.


Assuntos
Butiratos/imunologia , Imunidade Inata , Monócitos/imunologia , Monócitos/metabolismo , Receptores Imunológicos/metabolismo , Adulto , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antígenos de Bactérias/imunologia , Biomarcadores , Regulação para Baixo , Exposição Ambiental , Feminino , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/metabolismo , Receptores Imunológicos/genética , Transativadores/metabolismo
2.
PLoS One ; 9(5): e97780, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24841635

RESUMO

Resident human lamina propria immune cells serve as powerful effectors in host defense. Molecular events associated with the initiation of an intestinal inflammatory response in these cells are largely unknown. Here, we aimed to characterize phenotypic and functional changes induced in these cells at the onset of intestinal inflammation using a human intestinal organ culture model. In this model, healthy human colonic mucosa was depleted of epithelial cells by EDTA treatment. Following loss of the epithelial layer, expression of the inflammatory mediators IL1B, IL6, IL8, IL23A, TNFA, CXCL2, and the surface receptors CD14, TLR2, CD86, CD54 was rapidly induced in resident lamina propria cells in situ as determined by qRT-PCR and immunohistology. Gene microarray analysis of lamina propria cells obtained by laser-capture microdissection provided an overview of global changes in gene expression occurring during the initiation of an intestinal inflammatory response in these cells. Bioinformatic analysis gave insight into signalling pathways mediating this inflammatory response. Furthermore, comparison with published microarray datasets of inflamed mucosa in vivo (ulcerative colitis) revealed a significant overlap of differentially regulated genes underlining the in vivo relevance of the organ culture model. Furthermore, genes never been previously associated with intestinal inflammation were identified using this model. The organ culture model characterized may be useful to study molecular mechanisms underlying the initiation of an intestinal inflammatory response in normal mucosa as well as potential alterations of this response in inflammatory bowel disease.


Assuntos
Colo/imunologia , Mediadores da Inflamação/metabolismo , Inflamação/imunologia , Mucosa/imunologia , Técnicas de Cultura de Órgãos/métodos , Colo/citologia , Biologia Computacional , Citometria de Fluxo , Imunofluorescência , Humanos , Marcação In Situ das Extremidades Cortadas , Microdissecção e Captura a Laser , Análise em Microsséries , Mucosa/citologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA