Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(42): eabo5767, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269830

RESUMO

Physical forces are essential to biological function, but their impact at the tissue level is not fully understood. The gut is under continuous mechanical stress because of peristalsis. To assess the influence of mechanical cues on enteropathogen invasion, we combine computational imaging with a mechanically active gut-on-a-chip. After infecting the device with either of two microbes, we image their behavior in real time while mapping the mechanical stress within the tissue. This is achieved by reconstructing three-dimensional videos of the ongoing invasion and leveraging on-manifold inverse problems together with viscoelastic rheology. Our results show that peristalsis accelerates the destruction and invasion of intestinal tissue by Entamoeba histolytica and colonization by Shigella flexneri. Local tension facilitates parasite penetration and activates virulence genes in the bacteria. Overall, our work highlights the fundamental role of physical cues during host-pathogen interactions and introduces a framework that opens the door to study mechanobiology on deformable tissues.


Assuntos
Entamoeba histolytica , Peristaltismo , Dispositivos Lab-On-A-Chip , Simulação por Computador , Análise de Sequência com Séries de Oligonucleotídeos
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504012

RESUMO

The interleukin-2 receptor (IL-2R) is a cytokine receptor essential for immunity that transduces proliferative signals regulated by its uptake and degradation. IL-2R is a well-known marker of clathrin-independent endocytosis (CIE), a process devoid of any coat protein, raising the question of how the CIE vesicle is generated. Here, we investigated the impact of IL-2Rγ clustering in its endocytosis. Combining total internal reflection fluorescence (TIRF) live imaging of a CRISPR-edited T cell line endogenously expressing IL-2Rγ tagged with green fluorescent protein (GFP), with multichannel imaging, single-molecule tracking, and quantitative analysis, we were able to decipher IL-2Rγ stoichiometry at the plasma membrane in real time. We identified three distinct IL-2Rγ cluster populations. IL-2Rγ is secreted to the cell surface as a preassembled small cluster of three molecules maximum, rapidly diffusing at the plasma membrane. A medium-sized cluster composed of four to six molecules is key for IL-2R internalization and is promoted by interleukin 2 (IL-2) binding, while larger clusters (more than six molecules) are static and inefficiently internalized. Moreover, we identified membrane cholesterol and the branched actin cytoskeleton as key regulators of IL-2Rγ clustering and IL-2-induced signaling. Both cholesterol depletion and Arp2/3 inhibition lead to the assembly of large IL-2Rγ clusters, arising from the stochastic interaction of receptor molecules in close correlation with their enhanced lateral diffusion at the membrane, thus resulting in a default in IL-2R endocytosis. Despite similar clustering outcomes, while cholesterol depletion leads to a sustained IL-2-dependent signaling, Arp2/3 inhibition prevents signal initiation. Taken together, our results reveal the importance of cytokine receptor clustering for CIE initiation and signal transduction.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Endocitose , Receptores de Interleucina-2/metabolismo , Linfócitos T/metabolismo , Transporte Biológico , Humanos , Transdução de Sinais
4.
Cell Host Microbe ; 26(3): 435-444.e4, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492657

RESUMO

Intestinal epithelial cells are constantly exposed to pathogens and mechanical forces. However, the impact of mechanical forces on infections leading to diarrheal diseases remains largely unknown. Here, we addressed whether flow and peristalsis impact the infectivity of the human pathogen Shigella within a 3D colonic epithelium using Intestine-Chip technology. Strikingly, infection is significantly increased and minimal bacterial loads are sufficient to invade enterocytes from the apical side and trigger loss of barrier integrity, thereby shifting the paradigm about early stage Shigella invasion. Shigella quickly colonizes epithelial crypt-like invaginations and demonstrates the essential role of the microenvironment. Furthermore, by modulating the mechanical forces of the microenvironment, we find that peristalsis impacts Shigella invasion. Collectively, our results reveal that Shigella leverages the intestinal microenvironment by taking advantage of the microarchitecture and mechanical forces to efficiently invade the intestine. This approach will enable molecular and mechanistic interrogation of human-restricted enteric pathogens.


Assuntos
Disenteria Bacilar/microbiologia , Interações Hospedeiro-Patógeno , Intestinos/microbiologia , Aderência Bacteriana , Células CACO-2 , Enterócitos , Células Epiteliais/microbiologia , Humanos , Mucosa Intestinal/microbiologia , Shigella/patogenicidade
5.
Proc Natl Acad Sci U S A ; 116(27): 13582-13591, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209035

RESUMO

Intracellular trafficking pathways in eukaryotic cells are essential to maintain organelle identity and structure, and to regulate cell communication with its environment. Shigella flexneri invades and subverts the human colonic epithelium by the injection of virulence factors through a type 3 secretion system (T3SS). In this work, we report the multiple effects of two S. flexneri effectors, IpaJ and VirA, which target small GTPases of the Arf and Rab families, consequently inhibiting several intracellular trafficking pathways. IpaJ and VirA induce large-scale impairment of host protein secretion and block the recycling of surface receptors. Moreover, these two effectors decrease clathrin-dependent and -independent endocytosis. Therefore, S. flexneri infection induces a global blockage of host cell intracellular transport, affecting the exchange between cells and their external environment. The combined action of these effectors disorganizes the epithelial cell polarity, disturbs epithelial barrier integrity, promotes multiple invasion events, and enhances the pathogen capacity to penetrate into the colonic tissue in vivo.


Assuntos
Disenteria Bacilar/fisiopatologia , Mucosa Intestinal/microbiologia , Shigella flexneri , Transporte Biológico , Células CACO-2 , Polaridade Celular , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Colo/fisiopatologia , Disenteria Bacilar/metabolismo , Disenteria Bacilar/patologia , Endocitose , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiologia
6.
J Cell Biol ; 217(12): 4092-4105, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30348749

RESUMO

Caveolae are small invaginated pits that function as dynamic mechanosensors to buffer tension variations at the plasma membrane. Here we show that under mechanical stress, the EHD2 ATPase is rapidly released from caveolae, SUMOylated, and translocated to the nucleus, where it regulates the transcription of several genes including those coding for caveolae constituents. We also found that EHD2 is required to maintain the caveolae reservoir at the plasma membrane during the variations of membrane tension induced by mechanical stress. Metal-replica electron microscopy of breast cancer cells lacking EHD2 revealed a complete absence of caveolae and a lack of gene regulation under mechanical stress. Expressing EHD2 was sufficient to restore both functions in these cells. Our findings therefore define EHD2 as a central player in mechanotransduction connecting the disassembly of the caveolae reservoir with the regulation of gene transcription under mechanical stress.


Assuntos
Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Mecanotransdução Celular , Estresse Mecânico , Transcrição Gênica , Proteínas de Transporte/genética , Células HeLa , Humanos
7.
Nat Commun ; 9(1): 698, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449608

RESUMO

Elucidating protein functions and molecular organisation requires to localise precisely single or aggregated molecules and analyse their spatial distributions. We develop a statistical method SODA (Statistical Object Distance Analysis) that uses either micro- or nanoscopy to significantly improve on standard co-localisation techniques. Our method considers cellular geometry and densities of molecules to provide statistical maps of isolated and associated (coupled) molecules. We use SODA with three-colour structured-illumination microscopy (SIM) images of hippocampal neurons, and statistically characterise spatial organisation of thousands of synapses. We show that presynaptic synapsin is arranged in asymmetric triangle with the 2 postsynaptic markers homer and PSD95, indicating a deeper localisation of homer. We then determine stoichiometry and distance between localisations of two synaptic vesicle proteins with 3D-STORM. These findings give insights into the protein organisation at the synapse, and prove the efficiency of SODA to quantitatively assess the geometry of molecular assemblies.

8.
Cell Rep ; 22(6): 1574-1588, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29425511

RESUMO

Eukaryotic cells internalize cargos specifically through clathrin-mediated endocytosis (CME) or clathrin-independent endocytosis (CIE). EndophilinA2 was shown as preferentially implicated in CIE, although initially involved in CME. Here, we investigated the native interplay of endophilinA2 and dynamin2 during CME as compared to CIE. We developed an unbiased integrative approach based on genome engineering, robust tracking methodology, and advanced analytics. We statistically identified CME and CIE subpopulations corresponding to abortive, active, and static endocytic events. Depletion of dynamin2 strongly affected active CME and CIE events, whereas the absence of endophilinA2 impacted only CIE. Accordingly, we demonstrated that endophilinA2 is needed for dynamin2 recruitment during CIE, but not in CME. Despite these differences, endophilinA2 and dynamin2 acted at the latest stage of endocytosis within a similar stoichiometry in both mechanisms. Thus, we propose a conserved function of dynamin2 and endophilinA2 in vesicle scission, but a differential regulation of their recruitment during CME and CIE.


Assuntos
Endocitose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Clatrina/metabolismo , Dinamina II , Humanos
9.
Elife ; 62017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268862

RESUMO

Despite a well-established role for the epidermal growth factor receptor (EGFR) in tumorigenesis, EGFR activities and endocytosis in tumors in vivo have not been studied. We labeled endogenous EGFR with GFP by genome-editing of human oral squamous cell carcinoma cells, which were used to examine EGFR-GFP behavior in mouse tumor xenografts in vivo. Intravital multiphoton imaging, confocal imaging of cryosections and biochemical analysis revealed that localization and trafficking patterns, as well as levels of phosphorylation and ubiquitylation of EGFR in tumors in vivo closely resemble patterns and levels observed in the same cells treated with 20-200 pM EGF in vitro. Consistent with the prediction of low ligand concentrations in tumors, EGFR endocytosis was kinase-dependent and blocked by inhibitors of clathrin-mediated internalization; and EGFR activity was insensitive to Cbl overexpression. Collectively, our data suggest that a small pool of active EGFRs is sufficient to drive tumorigenesis by signaling primarily through the Ras-MAPK pathway.


Assuntos
Carcinoma de Células Escamosas/fisiopatologia , Endocitose , Receptores ErbB/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Ubiquitinação , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Fosforilação
10.
Nat Nanotechnol ; 12(8): 750-756, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28581510

RESUMO

Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.


Assuntos
Caveolina 1/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose , Nanoestruturas/química , Linhagem Celular , Humanos
11.
Dev Cell ; 32(2): 231-40, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25625208

RESUMO

In budding yeast, over 60 proteins functioning in at least five modules are recruited to endocytic sites with predictable order and timing. However, how sites of clathrin-mediated endocytosis are initiated and stabilized is not well understood. Here, the casein kinase 1 (CK1) Hrr25 is shown to be an endocytic protein and to be among the earliest proteins to appear at endocytic sites. Hrr25 absence or overexpression decreases or increases the rate of endocytic site initiation, respectively. Ede1, an early endocytic Eps15-like protein important for endocytic initiation, is an Hrr25 target and is required for Hrr25 recruitment to endocytic sites. Hrr25 phosphorylation of Ede1 is required for Hrr25-Ede1 interaction and promotes efficient initiation of endocytic sites. These observations indicate that Hrr25 kinase and Ede1 cooperate to initiate and stabilize endocytic sites. Analysis of the mammalian homologs CK1δ/ε suggests a conserved role for these protein kinases in endocytic site initiation and stabilization.


Assuntos
Caseína Quinase I/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Humanos , Fosforilação/fisiologia
12.
J Cell Biol ; 205(5): 721-35, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24891602

RESUMO

Clathrin-mediated endocytosis (CME) involves the recruitment of numerous proteins to sites on the plasma membrane with prescribed timing to mediate specific stages of the process. However, how choreographed recruitment and function of specific proteins during CME is achieved remains unclear. Using genome editing to express fluorescent fusion proteins at native levels and live-cell imaging with single-molecule sensitivity, we explored dynamin2 stoichiometry, dynamics, and functional interdependency with actin. Our quantitative analyses revealed heterogeneity in the timing of the early phase of CME, with transient recruitment of 2-4 molecules of dynamin2. In contrast, considerable regularity characterized the final 20 s of CME, during which ∼26 molecules of dynamin2, sufficient to make one ring around the vesicle neck, were typically recruited. Actin assembly generally preceded dynamin2 recruitment during the late phases of CME, and promoted dynamin recruitment. Collectively, our results demonstrate precise temporal and quantitative regulation of the dynamin2 recruitment influenced by actin polymerization.


Assuntos
Actinas/metabolismo , Clatrina/química , Dinamina II/metabolismo , Endocitose/fisiologia , Linhagem Celular , Separação Celular , Citoesqueleto/metabolismo , Citometria de Fluxo , Genoma , Humanos , Processamento de Imagem Assistida por Computador , Células K562 , Mutagênese , Estrutura Terciária de Proteína , Transferrina
13.
Dev Cell ; 24(2): 182-95, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23333351

RESUMO

Spatial and temporal control of actin filament barbed end elongation is crucial for force generation by actin networks. In this study, genetics, cell biology, and biochemistry were used to reveal three complementary mechanisms that regulate actin filament barbed end elongation in Arp2/3-derived networks. Aip1 inhibits elongation of aged ADP-actin filaments decorated with cofilin and, together with capping protein (CP), maintains a high level of assembly-competent actin species. We identified Abp1 and Aim3 as two additional proteins that work together to inhibit barbed end elongation. Abp1/Aim3 collaborates with CP to control elongation of newly assembled ATP-actin filaments to organize filament polarity within actin networks. Thus, three distinct mechanisms control filament elongation in different regions of Arp2/3 networks, maintaining pools of assembly-competent actin species while ensuring proper filament polarity and facilitating force production.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Fatores de Despolimerização de Actina/metabolismo , Animais , Linhagem Celular , Proteínas dos Microfilamentos/metabolismo , Potoroidae
14.
Mol Biol Cell ; 23(15): 2891-904, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22675027

RESUMO

Myosin 1E (Myo1E) is recruited to sites of clathrin-mediated endocytosis coincident with a burst of actin assembly. The recruitment dynamics and lifetime of Myo1E are similar to those of tagged actin polymerization regulatory proteins. Like inhibition of actin assembly, depletion of Myo1E causes reduced transferrin endocytosis and a significant delay in transferrin trafficking to perinuclear compartments, demonstrating an integral role for Myo1E in these actin-mediated steps. Mistargeting of GFP-Myo1E or its src-homology 3 domain to mitochondria results in appearance of WIP, WIRE, N-WASP, and actin filaments at the mitochondria, providing evidence for Myo1E's role in actin assembly regulation. These results suggest for mammalian cells, similar to budding yeast, interdependence in the recruitment of type I myosins, WIP/WIRE, and N-WASP to endocytic sites for Arp2/3 complex activation to assemble F-actin as endocytic vesicles are being formed.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Endocitose , Miosinas/metabolismo , Células 3T3 , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Células COS , Membrana Celular , Movimento Celular , Chlorocebus aethiops , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Miosina Tipo I , Transporte Proteico , Transferrina/metabolismo
15.
Traffic ; 11(8): 1079-91, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20444238

RESUMO

Growing evidence indicates that kinases are central to the regulation of endocytic pathways. Previously, we identified p21-activated kinase 1 (Pak1) as the first specific regulator of clathrin- and caveolae-independent endocytosis used by the interleukin 2 receptor subunit (IL-2R). Here, we address the mechanism by which Pak1 regulates IL-2Rbeta endocytosis. First, we show that Pak1 phosphorylates an activator of actin polymerization, cortactin, on its serine residues 405 and 418. Consistently, we observe a specific inhibition of IL-2Rbeta endocytosis when cells overexpress a cortactin, wherein these serine residues have been mutated. In addition, we show that the actin polymerization enhancer, neuronal Wiskott-Aldrich syndrome protein (N-WASP), is involved in IL-2Rbeta endocytosis. Strikingly, we find that Pak1 phosphorylation of cortactin on serine residues 405 and 418 increases its association with N-WASP. Thus, Pak1, by controlling the interaction between cortactin and N-WASP, could regulate the polymerization of actin during clathrin-independent endocytosis.


Assuntos
Caveolinas/metabolismo , Clatrina/metabolismo , Cortactina/metabolismo , Endocitose/fisiologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Quinases Ativadas por p21/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Cortactina/genética , Humanos , Subunidade beta de Receptor de Interleucina-2/metabolismo , Fosforilação , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Quinases Ativadas por p21/genética
16.
Cell Microbiol ; 12(2): 217-32, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19840028

RESUMO

Inactivation of different small GTPases upon their glucosylation by lethal toxin from Clostridium sordellii strain IP82 (LT-82) is already known to lead to cell rounding, adherens junction (AJ) disorganization and actin depolymerization. In the present work, we observed that LT-82 induces a rapid dephosphorylation of paxillin, a protein regulating focal adhesion (FA), independently of inactivation of paxillin kinases such as Src, Fak and Pyk2. Among the small GTPases inactivated by this toxin, including Rac, Ras, Rap and Ral, we identified Rac1, as responsible for paxillin dephosphorylation using cells overexpressing Rac1(V12). Rac1 inactivation by LT-82 modifies interactions between proteins from AJ and FA complexes as shown by pull-down assays. We showed that in Triton X-100-insoluble membrane proteins from these complexes, namely E-cadherin, beta-catenin, p120-catenin and talin, are decreased upon LT-82 intoxication, a treatment that also induces a rapid decrease in cell phosphoinositide content. Therefore, we proposed that Rac inactivation by LT-82 alters phosphoinositide metabolism leading to FA and AJ complex disorganization and actin depolymerization.


Assuntos
Actinas/metabolismo , Toxinas Bacterianas/farmacologia , Clostridium sordellii/efeitos dos fármacos , Clostridium sordellii/metabolismo , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Microscopia Confocal , Microscopia de Contraste de Fase , Ligação Proteica/efeitos dos fármacos
17.
EMBO Rep ; 9(4): 356-62, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18344974

RESUMO

There are several endocytic pathways, which are either dependent on or independent of clathrin. This study focuses on a poorly characterized mechanism-clathrin- and caveolae-independent endocytosis-used by the interleukin-2 receptor beta (IL-2R beta). We address the question of its regulation in comparison with the clathrin-dependent pathway. First, we show that Ras-related C3 botulinum toxin substrate 1 (Rac1) is specifically required for IL-2R beta entry, and we identify p21-activated kinases (Paks) as downstream targets. By RNA interference, we show that Pak1 and Pak2 are both necessary for IL-2R beta uptake, in contrast to the clathrin-dependent route. We observe that cortactin, a partner of actin and dynamin-two essential endocytic factors-is required for IL-2R beta uptake. Furthermore, we find that cortactin acts downstream from Paks, suggesting control of its function by these kinases. Thus, we describe a cascade composed of Rac1, Paks and cortactin specifically regulating IL-2R beta internalization. This study indicates Paks as the first specific regulators of the clathrin-independent endocytosis pathway.


Assuntos
Endocitose/fisiologia , Receptores de Interleucina-2/fisiologia , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular , Clatrina/metabolismo , Cortactina/metabolismo , Humanos , Microscopia de Fluorescência , Interferência de RNA , Receptores de Interleucina-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA