Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6296, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491261

RESUMO

Protein residues within binding pockets play a critical role in determining the range of ligands that can interact with a protein, influencing its structure and function. Identifying structural similarities in proteins offers valuable insights into their function and activation mechanisms, aiding in predicting protein-ligand interactions, anticipating off-target effects, and facilitating the development of therapeutic agents. Numerous computational methods assessing global or local similarity in protein cavities have emerged, but their utilization is impeded by complexity, impractical automation for amino acid pattern searches, and an inability to evaluate the dynamics of scrutinized protein-ligand systems. Here, we present a general, automatic and unbiased computational pipeline, named VirtuousPocketome, aimed at screening huge databases of proteins for similar binding pockets starting from an interested protein-ligand complex. We demonstrate the pipeline's potential by exploring a recently-solved human bitter taste receptor, i.e. the TAS2R46, complexed with strychnine. We pinpointed 145 proteins sharing similar binding sites compared to the analysed bitter taste receptor and the enrichment analysis highlighted the related biological processes, molecular functions and cellular components. This work represents the foundation for future studies aimed at understanding the effective role of tastants outside the gustatory system: this could pave the way towards the rationalization of the diet as a supplement to standard pharmacological treatments and the design of novel tastants-inspired compounds to target other proteins involved in specific diseases or disorders. The proposed pipeline is publicly accessible, can be applied to any protein-ligand complex, and could be expanded to screen any database of protein structures.


Assuntos
Proteínas , Papilas Gustativas , Humanos , Ligantes , Sítios de Ligação , Proteínas/metabolismo , Paladar , Papilas Gustativas/metabolismo , Ligação Proteica
2.
Int J Pharm ; 649: 123632, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000648

RESUMO

The efficacy of transfection vectors to cross the endosomal membrane into the cytosol is a central aspect in the development of nucleic acid-based therapeutics. The challenge remains the same: Delivery, Delivery, Delivery. Despite a rational and appropriate construct of triblock polymeric micelles, which could serve as an ideal platform for the co-delivery of siRNAs and hydrophobic anticancer drugs, we show here its inability to properly convey oligonucleotides to their final destination. In order to overcome biological barriers, a linear PEI comprising two orthogonal groups was synthesized, holding an appropriate balance between safety and efficacy. Micellar carriers were then formulated with this polymer to enhance endosomal siRNA release. This chemical technology also addresses the two major challenges to consider when developing novel micellar products for siRNA delivery, namely cytotoxicity of polycations and endosomal escape. Herein, we demonstrate successful release of siRNA using a polymer tailoring strategy combined with a relevant in vitro approach, considering STAT3 as a promising target in the treatment of non-small cell lung cancer (NSCLC).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RNA Interferente Pequeno/química , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Polietilenoimina/química , Micelas , Neoplasias Pulmonares/genética , Polímeros/química , Linhagem Celular Tumoral
3.
J Mol Graph Model ; 125: 108587, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579519

RESUMO

The glucocorticoid receptor (GR) is a nuclear receptor that controls critical biological processes by regulating the transcription of specific genes. GR transcriptional activity is modulated by a series of ligands and coenzymes, where a ligand can act as an agonist or antagonist. GR agonists, such as the glucocorticoids dexamethasone (DEX) and prednisolone, are widely prescribed to patients with inflammatory and autoimmune diseases. DEX is also used to induce osteogenic differentiation in vitro. Recently, it has been highlighted that DEX induces changes in the osteogenic differentiation of human mesenchymal stromal cells by downregulating the transcription factor SRY-box transcription factor 9 (SOX9) and upregulating the peroxisome proliferator-activated receptor γ (PPARG). SOX9 is fundamental in the control of chondrogenesis, but also in osteogenesis by acting as a dominant-negative of RUNX2. Many processes remain to be clarified during cell fate determination, such as the interplay between the key transcription factors. The main objective pursued by this work is to shed light on the interaction between GR and SOX9 in the presence and absence of DEX at an atomic level of resolution using molecular dynamics simulations. The outcome of this research could help the understanding of possible molecular interactions between GR and SOX9 and their role in the determination of cell fate. The results highlight the key residues at the interface between GR and SOX9 involved in the complexation process and shed light on the mechanism through which DEX modulates GR-SOX9 binding and exerts its biological activity.


Assuntos
Dexametasona , Receptores de Glucocorticoides , Humanos , Receptores de Glucocorticoides/genética , Dexametasona/farmacologia , Simulação de Dinâmica Molecular , Osteogênese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
4.
PLoS Negl Trop Dis ; 17(1): e0010545, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689459

RESUMO

Chagas' disease is a neglected tropical disease caused by the kinetoplastid protozoan Trypanosoma cruzi. The only therapies are the nitroheterocyclic chemicals nifurtimox and benznidazole that cause various adverse effects. The need to create safe and effective medications to improve medical care remains critical. The lack of verified T. cruzi therapeutic targets hinders medication research for Chagas' disease. In this respect, cytochrome bc1 has been identified as a promising therapeutic target candidate for antibacterial medicines of medical and agricultural interest. Cytochrome bc1 belongs to the mitochondrial electron transport chain and transfers electrons from ubiquinol to cytochrome c1 by the action of two catalytic sites named Qi and Qo. The two binding sites are highly selective, and specific inhibitors exist for each site. Recent studies identified the Qi site of the cytochrome bc1 as a promising drug target against T. cruzi. However, a lack of knowledge of the drug mechanism of action unfortunately hinders the development of new therapies. In this context, knowing the cause of binding site selectivity and the mechanism of action of inhibitors and substrates is crucial for drug discovery and optimization processes. In this paper, we provide a detailed computational investigation of the Qi site of T. cruzi cytochrome b to shed light on the molecular mechanism of action of known inhibitors and substrates. Our study emphasizes the action of inhibitors at the Qi site on a highly unstructured portion of cytochrome b that could be related to the biological function of the electron transport chain complex.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Citocromos b/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Membranas Mitocondriais , Doença de Chagas/tratamento farmacológico
5.
Colloids Surf B Biointerfaces ; 222: 113115, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603410

RESUMO

Trodusquemine is an amphipathic aminosterol that has recently shown therapeutic benefit in neurodegenerative diseases altering the binding of misfolded proteins to the cell membrane. To unravel the underlying mechanism, we studied the interactions between Trodusquemine (TRO) and lipid monolayers simulating the outer layer of the plasma membrane. We selected two different compositions of dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), cholesterol (Chol) and monosialotetrahexosylganglioside (GM1) lipid mixture mimicking either a lipid-raft containing membrane (Ld+So phases) or a single-phase disordered membrane (Ld phase). Surface pressure-area isotherms and surface compressional modulus-area combined with Brewster Angle Microscopy (BAM) provided the thermodynamic and morphological information on the lipid monolayer in the presence of increasing amounts of TRO in the monolayer. Experiments revealed that TRO forms stable spreading monolayers at the buffer-air interface where it undergoes multiple reversible phase transitions to bi- and tri-layers at the interface. When TRO was spread at the interface with the lipid mixtures, we found that it distributes in the lipid monolayer for both the selected lipid compositions, but a maximum TRO uptake in the rafts-containing monolayer was observed for a Lipid/TRO molar ratio equal to 3:2. Statistical analysis of BAM images revealed that TRO induces a decrease in the size of the condensed domains, an increase in their number and in the thickness mismatch between the Ld and So phase. Experiments and MD simulations converge to indicate that TRO adsorbs preferentially at the border of the So domains. Removal of GM1 from the lipid Ld+So mixture resulted in an even greater TRO-mediated reduction of the size of the So domains suggesting that the presence of GM1 hinders the localization of TRO at the So domains boundaries. Taken together these observations suggest that Trodusquemine influences the organization of lipid rafts within the neuronal membrane in a dose-dependent manner whereas it evenly distributes in disordered expanded phases of the membrane model.


Assuntos
Gangliosídeo G(M1) , Membranas Artificiais , Colesterol/química , Microdomínios da Membrana/química
6.
Sci Rep ; 12(1): 21735, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526644

RESUMO

The umami taste is one of the five basic taste modalities normally linked to the protein content in food. The implementation of fast and cost-effective tools for the prediction of the umami taste of a molecule remains extremely interesting to understand the molecular basis of this taste and to effectively rationalise the production and consumption of specific foods and ingredients. However, the only examples of umami predictors available in the literature rely on the amino acid sequence of the analysed peptides, limiting the applicability of the models. In the present study, we developed a novel ML-based algorithm, named VirtuousUmami, able to predict the umami taste of a query compound starting from its SMILES representation, thus opening up the possibility of potentially using such a model on any database through a standard and more general molecular description. Herein, we have tested our model on five databases related to foods or natural compounds. The proposed tool will pave the way toward the rationalisation of the molecular features underlying the umami taste and toward the design of specific peptide-inspired compounds with specific taste properties.


Assuntos
Percepção Gustatória , Paladar , Peptídeos/química , Alimentos , Aprendizado de Máquina
7.
Curr Res Food Sci ; 5: 2270-2280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439645

RESUMO

Perception of taste is an emergent phenomenon arising from complex molecular interactions between chemical compounds and specific taste receptors. Among all the taste perceptions, the dichotomy of sweet and bitter tastes has been the subject of several machine learning studies for classification purposes. While previous studies have provided accurate sweeteners/bitterants classifiers, there is ample scope to enhance these models by enriching the understanding of the molecular basis of bitter-sweet tastes. Towards these goals, our study focuses on the development and testing of several machine learning strategies coupled with the novel SHapley Additive exPlanations (SHAP) for a rational sweetness/bitterness classification. This allows the identification of the chemical descriptors of interest by allowing a more informed approach toward the rational design and screening of sweeteners/bitterants. To support future research in this field, we make all datasets and machine learning models publicly available and present an easy-to-use code for bitter-sweet taste prediction.

8.
Polymers (Basel) ; 14(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297986

RESUMO

The simulation of large molecular systems remains a daunting challenge, which justifies the exploration of novel methodologies to keep computers as an ideal companion tool for everyday laboratory work. Whole micelles, bigger than 20 nm in size, formed by the self-assembly of hundreds of copolymers containing more than 50 repeating units, have until now rarely been simulated, due to a lack of computational power. Therefore, a flexible amphiphilic triblock copolymer (mPEG45-α-PLL10-PLA25) containing a total of 80 repeating units, has been emulated and synthesized to embody compactified nanoconstructs of over 900 assembled copolymers, sized between 80 and 100 nm, for siRNA complexing purposes. In this study, the tailored triblock copolymers containing a controlled number of amino groups, were used as a support model to address the binding behavior of STAT3-siRNA, in the formation of micelleplexes. Since increasingly complex drug delivery systems require an ever more optimized physicochemical characterization, a converging description has been implemented by a combination of experimentation and computational simulations. The computational data were advantageous in allowing for the assumption of an optimal N/P ratio favoring both conformational rigidifications of STAT3-siRNA with low competitive phenomena at the binding sites of the micellar carriers. These calculations were consistent with the experimental data showing that an N/P ratio of 1.5 resulted in a sufficient amount of complexed STAT3-siRNA with an electrical potential at the slipping plane of the nanopharmaceuticals, close to the charge neutralization.

9.
Biophys J ; 121(23): 4679-4688, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36262042

RESUMO

Spinocerebellar ataxia type 1 is a degenerative disorder caused by polyglutamine expansions and aggregation of Ataxin-1. The interaction between Capicua (CIC) and the AXH domain of Ataxin-1 protein has been suggested as a possible driver of aggregation for the expanded Ataxin-1 protein and the subsequent onset of spinocerebellar ataxia 1. Experimental studies have demonstrated that short constructs of CIC may prevent such aggregation and suggested this as a possible candidate to inspire the rational design of peptidomimetics. In this work, molecular modeling techniques, namely the alchemical mutation and force field-based molecular dynamics, have been employed to propose a pipeline for the rational design of a CIC-inspired inhibitor of the ataxin-1 aggregation pathway. In particular, this study has shown that the alchemical mutation can estimate the affinity between AXH and CIC with good correlation with experimental data, while molecular dynamics shed light on molecular mechanisms that occur for stabilization of the interaction between the CIC-inspired construct and the AXH domain of Ataxin-1. This work lays the foundation for a rational methodology for the in silico screening and design of peptidomimetics, which can expedite and streamline experimental studies to identify strategies for inhibiting the ataxin-1 aggregation pathway.


Assuntos
Peptidomiméticos , Ataxina-1 , Peptidomiméticos/farmacologia
10.
Eur Food Res Technol ; 248(9): 2215-2235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637881

RESUMO

Taste is a sensory modality crucial for nutrition and survival, since it allows the discrimination between healthy foods and toxic substances thanks to five tastes, i.e., sweet, bitter, umami, salty, and sour, associated with distinct nutritional or physiological needs. Today, taste prediction plays a key role in several fields, e.g., medical, industrial, or pharmaceutical, but the complexity of the taste perception process, its multidisciplinary nature, and the high number of potentially relevant players and features at the basis of the taste sensation make taste prediction a very complex task. In this context, the emerging capabilities of machine learning have provided fruitful insights in this field of research, allowing to consider and integrate a very large number of variables and identifying hidden correlations underlying the perception of a particular taste. This review aims at summarizing the latest advances in taste prediction, analyzing available food-related databases and taste prediction tools developed in recent years. Supplementary Information: The online version contains supplementary material available at 10.1007/s00217-022-04044-5.

11.
J Biomol Struct Dyn ; 40(24): 13472-13481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34641761

RESUMO

In the present paper we propose a novel blind docking protocol based on Autodock-Vina. The developed docking protocol can provide binding site identification and binding pose prediction at the same time, by a systematical exploration of the protein volume performed with several preliminary docking calculations. In our opinion, this protocol can be successfully applied during the first steps of the virtual screening pipeline, because it provides binding site identification and binding pose prediction at the same time without visual evaluation of the binding site. After the binding pose prediction, MM/GBSA re-scoring rescoring procedures has been applied to improve the accuracy of the protein-ligand bound state. The FRAD protocol has been tested on 116 protein-ligand complexes of the Heat Shock Protein 90 - alpha, on 176 of Human Immunodeficiency virus protease 1, and on more than 100 protein-ligand system taken from the PDBbind dataset. Overall, the FRAD approach combined to MM/GBSA re-scoring can be considered as a powerful tool to increase the accuracy and efficiency with respect to other standard docking approaches when the ligand-binding site is unknown.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Choque Térmico HSP90 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Sítios de Ligação , Proteínas de Choque Térmico HSP90/química
12.
Elife ; 102021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34713805

RESUMO

Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (-150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (-5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo.


Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes 'megapolarized', this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.


Assuntos
Peptídeos Penetradores de Células/genética , Canais de Potássio/genética , Animais , Linhagem Celular , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Células HeLa , Humanos , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
13.
J Comput Chem ; 42(9): 586-599, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33351966

RESUMO

Dynamical properties are of great importance in determining the behavior of synthetic and natural molecules, but capturing them by computational methods is a nontrivial task. Very often the time scales of the relevant phenomena are far beyond the typical time windows accessible by classical Molecular Dynamics (MD) simulations, currently limited to the order of microseconds on standard laboratory workstations. On the other hand, biased and accelerated simulations allow for fast and thorough exploration of the molecular conformational space, but they lose the dynamic information. The problem of recovering dynamics from biased/accelerated simulations is a very active field of research, but no totally robust/reliable solutions have been given yet. In this paper it is shown how the Smoluchowski equation, in the framework of Diffusion Theory (DT), can be used to bridge this gap, and dynamical properties, in the form of time correlation functions (TCFs), can be extracted also from such kind of simulations. DT is first extended (EDT) to express the mobility tensors entering the Smoluchowski operator in terms of a recently introduced unified and regularized Rotne-Prager-Yamakawa approximation, [P. J. Zuk, E. Wajnryb, K. A. Mizerski, P. Szymczak, J. Fluid. Mech. 2014, 741, R5, 1-13] also involving mixed rotation-translation contributions, and rotation-rotation terms beside the classical translation-translation ones, so far used in DT. Then, the method is applied to recover the dynamics of a nontrivial example of a peptide in explicit water from the first 200 ns of a Replica Exchange Molecular Dynamics simulation, which is a popular computational method that destroys the long time dynamics. EDT dynamics were found to favorably compare against those coming from a standard MD simulation of the same system, requiring a time window of 30 µs to converge. This result shows that EDT is a tool of practical value to recover the long time dynamics of systems in diffusive regimes from biased/accelerated simulations, to be exploited in those cases when direct evaluation by standard MD is unfeasible.

14.
Proc Natl Acad Sci U S A ; 117(50): 31871-31881, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257567

RESUMO

TAT-RasGAP317-326 is a cell-penetrating peptide-based construct with anticancer and antimicrobial activities. This peptide kills a subset of cancer cells in a manner that does not involve known programmed cell death pathways. Here we have elucidated the mode of action allowing TAT-RasGAP317-326 to kill cells. This peptide binds and disrupts artificial membranes containing lipids typically enriched in the inner leaflet of the plasma membrane, such as phosphatidylinositol-bisphosphate (PIP2) and phosphatidylserine (PS). Decreasing the amounts of PIP2 in cells renders them more resistant to TAT-RasGAP317-326, while reducing the ability of cells to repair their plasma membrane makes them more sensitive to the peptide. The W317A TAT-RasGAP317-326 point mutant, known to have impaired killing activities, has reduced abilities to bind and permeabilize PIP2- and PS-containing membranes and to translocate through biomembranes, presumably because of a higher propensity to adopt an α-helical state. This work shows that TAT-RasGAP317-326 kills cells via a form of necrosis that relies on the physical disruption of the plasma membrane once the peptide targets specific phospholipids found on the cytosolic side of the plasma membrane.


Assuntos
Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proteínas Ativadoras de GTPase/farmacologia , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Cricetulus , Proteínas Ativadoras de GTPase/uso terapêutico , Células HeLa , Humanos , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/uso terapêutico
15.
Nanoscale ; 12(44): 22596-22614, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33150350

RESUMO

Trodusquemine is an aminosterol known to prevent the binding of misfolded protein oligomers to cell membranes and to reduce their toxicity in a wide range of neurodegenerative diseases. Its precise mechanism of action, however, remains unclear. To investigate this mechanism, we performed confocal microscopy, fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) measurements, which revealed a strong binding of trodusquemine to large unilamellar vesicles (LUVs) and neuroblastoma cell membranes. Then, by combining quartz crystal microbalance (QCM), fluorescence quenching and anisotropy, and molecular dynamics (MD) simulations, we found that trodusquemine localises within, and penetrates, the polar region of lipid bilayer. This binding behaviour causes a decrease of the negative charge of the bilayer, as observed through ζ potential measurements, an increment in the mechanical resistance of the bilayer, as revealed by measurements of the breakthrough force applied with AFM and ζ potential measurements at high temperature, and a rearrangement of the spatial distances between ganglioside and cholesterol molecules in the LUVs, as determined by FRET measurements. These physicochemical changes are all known to impair the interaction of misfolded oligomers with cell membranes, protecting them from their toxicity. Taken together, our results illustrate how the incorporation in cell membranes of sterol molecules modified by the addition of polyamine tails leads to the modulation of physicochemical properties of the cell membranes themselves, making them more resistant to protein aggregates associated with neurodegeneration. More generally, they suggest that therapeutic strategies can be developed to reinforce cell membranes against protein misfolded assemblies.


Assuntos
Bicamadas Lipídicas , Lipossomas Unilamelares , Membrana Celular , Colestanos , Espermina/análogos & derivados
16.
J Mol Graph Model ; 100: 107670, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32711259

RESUMO

Alzheimer disease (AD) is the most common cause of dementia, characterized by a progressive decline in cognitive function due to the abnormal aggregation and deposition of Amyloid beta (Aß) fibrils in the brain of patients. In this context, the molecular mechanisms of protein misfolding and aggregation that are known to induce significant biophysical alterations in cells, including destabilization of plasma membranes, remain partially unclear. Physical interaction between the Aß assemblies and the membrane leads to the disruption of the cell membrane in multiple ways including, surface carpeting, generation of transmembrane channels and detergent-like membrane dissolution. Understanding the impact of amyloidogenic protein in different stages of aggregation with the plasma membrane, plays a crucial role to fully elucidate the pathological mechanisms of AD. Within this framework, computer simulations represent a powerful tool able to shed lights on the interactions governing the structural influence of Aß proteins on biological membrane. In this study, molecular dynamics (MD) simulations have been performed in order to characterize how POPC bilayer conformational and mechanical properties are affected by the interaction with Aß11-42 peptide, oligomer and fibril.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Amiloide , Membrana Celular , Humanos , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos
17.
Front Chem ; 8: 108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154219

RESUMO

The cardinal role of microtubules in cell mitosis makes them interesting drug targets for many pharmacological treatments, including those against cancer. Moreover, different expression patterns between cell types for several tubulin isotypes represent a great opportunity to improve the selectivity and specificity of the employed drugs and to design novel compounds with higher activity only on cells of interest. In this context, tubulin isotype ßIII represents an excellent target for anti-tumoral therapies since it is overexpressed in most cancer cells and correlated with drug resistance. Colchicine is a well-known antimitotic agent, which is able to bind the tubulin dimer and to halt the mitotic process. However, it shows high toxicity also on normal cells and it is not specific for isotype ßIII. In this context, the search for colchicine derivatives is a matter of great importance in cancer research. In this study, homology modeling techniques, molecular docking, and molecular dynamics simulations have been employed to characterize the interaction between 55 new promising colchicine derivatives and tubulin isotype ßIII. These compounds were screened and ranked based on their binding affinity and conformational stability in the colchicine binding site of tubulin ßIII. Results from this study point the attention on an amide of 4-chlorine thiocolchicine. This colchicine-derivative is characterized by a unique mode of interaction with tubulin, compared to all other compounds considered, which is primarily characterized by the involvement of the α-T5 loop, a key player in the colchicine binding site. Information provided by the present study may be particularly important in the rational design of colchicine-derivatives targeting drug resistant cancer phenotypes.

18.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188076

RESUMO

The pursuit for effective strategies inhibiting the amyloidogenic process in neurodegenerative disorders, such as Alzheimer's disease (AD), remains one of the main unsolved issues, and only a few drugs have demonstrated to delay the degeneration of the cognitive system. Moreover, most therapies induce severe side effects and are not effective at all stages of the illness. The need to find novel and reliable drugs appears therefore of primary importance. In this context, natural compounds have shown interesting beneficial effects on the onset and progression of neurodegenerative diseases, exhibiting a great inhibitory activity on the formation of amyloid aggregates and proving to be effective in many preclinical and clinical studies. However, their inhibitory mechanism is still unclear. In this work, ensemble docking and molecular dynamics simulations on S-shaped Aß42 fibrils have been carried out to evaluate the influence of several natural compounds on amyloid conformational behaviour. A deep understanding of the interaction mechanisms between natural compounds and Aß aggregates may play a key role to pave the way for design, discovery and optimization strategies toward an efficient destabilization of toxic amyloid assemblies.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Doença de Alzheimer/tratamento farmacológico , Amiloide/química , Amiloide/efeitos dos fármacos , Peptídeos beta-Amiloides/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/efeitos dos fármacos , Conformação Proteica
19.
ACS Omega ; 5(6): 2978-2986, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32095720

RESUMO

Dendrimer nanocarriers are unique hyper-branched polymers with biomolecule-like properties, representing a promising prospect as a nucleic acid delivery system. The design of effective dendrimer-based gene carriers requires considering several parameters, such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity. In detail, the rational design of the dendrimer surface chemistry has been ascertained to play a crucial role on the efficiency of interaction with nucleic acids. Within this framework, advances in the field of organic chemistry have allowed us to design dendrimers with even small difference in the chemical structure of their surface terminals. In this study, we have selected two different cationic phosphorus dendrimers of generation 3 functionalized, respectively, with pyrrolidinium (DP) and morpholinium (DM) surface groups, which have demonstrated promising potential for short interfering RNA (siRNA) delivery. Despite DP and DM differing only for one atom in their chemical structure, in vitro and in vivo experiments have highlighted several differences between them in terms of siRNA complexation properties. In this context, we have employed coarse-grained molecular dynamics simulation techniques to shed light on the supramolecular characteristics of dendrimer-siRNA complexation, the so-called dendriplex formations. Our data provide important information on self-assembly dynamics driven by surface chemistry and competition mechanisms.

20.
J Biomol Struct Dyn ; 38(13): 3908-3915, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31543007

RESUMO

The aggregation of amyloid-beta peptides is associated with the pathogenesis of Alzheimer's disease. The hydrophobic core of the amyloid beta sequence contains a GxxxG repeated motif, called glycine zipper, which involves crucial residues for assuring stability and promoting the process of fibril formation. Mutations in this motif lead to a completely different oligomerization pathway and rate of fibril formation. In this work, we have tested G33L and G37L residue substitutions by molecular dynamics simulations. We found that both protein mutations may lead to remarkable changes in the fibril conformational stability. Results suggest the disruption of the glycine zipper as a possible strategy to reduce the aggregation propensity of amyloid beta peptides. On the basis of our data, further investigations may consider this key region as a binding site to design/discover novel effective inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Substituição de Aminoácidos , Amiloide , Peptídeos beta-Amiloides/genética , Glicina , Humanos , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA