RESUMO
Objective: This study aimed to investigate the feasibility of using the digital image processing technique, developed to semi-quantitatively study dermal penetration, to study corneal penetration in an ex vivo porcine eye model. Here, we investigated various formulation strategies intended to enhance dermal and corneal bioavailability of the model hydrophobic drug, curcumin. METHODS: Several formulation principles were explored, including oily solutions, oily suspensions, aqueous nanosuspension, micelles, liposomes and cyclodextrins. The dermal penetration efficacy was tested using an ex vivo porcine ear model previously developed at Philipps-Universität Marburg with subsequent digital image processing. This image analysis method was further applied to study corneal penetration using an ex vivo porcine whole-eye model. RESULTS: For dermal penetration, oily solutions, oily suspensions and nanosuspensions exhibited the least penetration, whereas liposomes and cyclodextrins showed enhanced penetration. Corneal curcumin penetration correlated with dermal penetration, with curcumin loaded into cyclodextrins penetrating the deepest. CONCLUSIONS: Overall, our study suggests that the image analysis method previously developed for ex vivo skin penetration can easily be repurposed to study corneal penetration of hydrophobic drugs.
RESUMO
BACKGROUND: Transferosomes (TFS) are ultra-deformable elastic bilayer vesicles that have previously been used to enhance gradient driven penetration through the skin. This study aimed to evaluate the potential of TFS for topical ocular drug delivery and to compare their penetration enhancing properties in different ocular tissues. METHODS: Curcumin-loaded TFS were prepared using Tween 80 as the edge activator. Drug release and precorneal retention of the TFS were evaluated in vitro, while their ocular biocompatibility and bioavailability were evaluated ex vivo using a curcumin solution in medium chain triglycerides as the oily control. RESULTS: The TFS had a narrow size distribution with a particle size less than 150â¯nm and an entrapment efficiency greater than 99.96â¯%. Burst release from the TFS was minimal and the formulation showed good corneal biocompatibility. Moreover, enhanced corneal and conjunctival drug penetration with significantly greater and deeper drug delivery was observed with TFS in all ocular tissues. CONCLUSION: TFS offer a promising platform for ocular delivery of hydrophobic drugs. This study, for the first time, elucidates the effect of tissue morphology and osmotic gradients on drug penetration in different ocular tissues.
RESUMO
Dacarbazine (DTIC) is the drug of choice for melanoma treatment, but its systemic administration is related to several adverse effects. Here, DTIC topical delivery stimulated by iontophoresis is proposed to overcome such drawbacks. Hence, this work analyzed the impact of anodal iontophoresis on DTIC cutaneous delivery to provide an innovative topical alternative for melanoma treatment. The electrical stability of the drug was evaluated prior to the iontophoretic experiments, which demonstrated the need to add an antioxidant to the drug formulation. DTIC cutaneous permeation was evaluated in vitro for 6 h using three current densities (0.10, 0.25, and 0.50 mA/cm2). In addition, the effect of DTIC against skin cancer cells (MeWo and WM164) was investigated for 72 h of exposure to the drug. Iontophoresis stimulated skin drug permeation compared to the passive control. However, the antioxidant presence reduced DTIC permeation under the lower currents of 0.10 and 0.25 mA/cm2, which was compensated by increasing the current density to 0.50 mA/cm2. At 0.50 mA/cm2, iontophoresis enhanced topical cutaneous drug permeation 7-fold (p < 0.05) compared to the passive control. DTIC showed a concentration-dependent antiproliferative effect on melanoma cell lines. Thus, iontophoresis intensifies DTIC skin penetration in concentrations that can reduce cell viability and induce cell death. In conclusion, DTIC cutaneous delivery mediated by iontophoresis is a promising approach for treating melanomas and other skin tumors.
Assuntos
Administração Cutânea , Dacarbazina , Iontoforese , Melanoma , Absorção Cutânea , Neoplasias Cutâneas , Iontoforese/métodos , Melanoma/tratamento farmacológico , Humanos , Neoplasias Cutâneas/tratamento farmacológico , Linhagem Celular Tumoral , Dacarbazina/administração & dosagem , Dacarbazina/farmacocinética , Animais , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Pele/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Sistemas de Liberação de MedicamentosRESUMO
The OphthalMimic is a 3D-printed device that simulates human ocular conditions with artificial lacrimal flow, cul-de-sac area, moving eyelid, and a surface to interact with ophthalmic formulations. All tests with such a device have used a continuous artificial tear flow rate of 1 mL/min for 5 min. Here, we implemented protocol variations regarding the application time and simulated tear flow to increase the test's discrimination and achieve reliable performance results. The new protocols incorporated the previously evaluated 0.2% fluconazole formulations containing or not chitosan as a mucoadhesive component (PLX16CS10 and PLX16, respectively) and novel moxifloxacin 5% formulations, either in a conventional formulation and a microemulsion (CONTROL and NEMOX, respectively). The flow rate was reduced by 50%, and a pre-flow application period was also included to allow formulation interaction with the membrane. The OphthalMimic model was used with both polymeric and hydrogel-based hybrid membranes, including a simulated eyelid. Lowering the flow made it feasible to prolong the testing duration, enhancing device discrimination potential. The hydrogel membrane was adequate for testing nanostructure formulations. The OphthalMimic device demonstrated once again to be a versatile method for evaluating the performance of ophthalmic drug formulations with the potential of reducing the use of animals for experimentation.
RESUMO
This study aimed to develop mucoadhesive chitosan-based films capable of enhancing the curcumin penetration into the oral mucosa to treat oral cancers. We developed three films containing medium molecular weight chitosan (190-310 KDa) and other excipients (polyvinyl alcohol, Poloxamer®407, and propylene glycol) that have proven to be compatible with each other and with curcumin in thermal analyses. The films were smooth, flexible, and precipitates free, with uniform weight and thickness, pH compatible with the oral mucosa, resistance to traction, and entrapped curcumin in a high proportion. They also exhibited necessary swelling and mucoadhesion for tissue adherence. Ex vivo penetration studies proved that the films significantly increased the penetration of curcumin into the oral mucosa compared to control, even when the mucosa was subjected to a condition of simulated salivation. Curcumin exhibited cytotoxic activity in vitro in the two head and neck cancer cell lines (FaDu, SCC-9) at doses close to those found in penetration studies with the films. When combined with radiotherapy, curcumin demonstrated superiority over single doses of radiotherapy at 4, 8, and 12 Gy. Therefore, the developed films may represent a promising alternative for the topical treatment of oral tumors.
Assuntos
Quitosana , Curcumina , Mucosa Bucal , Neoplasias Bucais , Curcumina/química , Curcumina/farmacologia , Curcumina/administração & dosagem , Quitosana/química , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Humanos , Linhagem Celular Tumoral , Mucosa Bucal/metabolismo , Mucosa Bucal/efeitos dos fármacos , Animais , Administração Tópica , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , AdesividadeRESUMO
Envisaging to improve the evaluation of ophthalmic drug products while minimizing the need for animal testing, our group developed the OphthalMimic device, a 3D-printed device that incorporates an artificial lacrimal flow, a cul-de-sac area, a moving eyelid, and a surface that interacts effectively with ophthalmic formulations, thereby providing a close representation of human ocular conditions. An important application of such a device would be its use as a platform for dissolution/release tests that closely mimic in vivo conditions. However, the surface that artificially simulates the cornea should have a higher resistance (10 min) than the previously described polymeric films (5 min). For this key assay upgrade, we describe the process of obtaining and thoroughly characterizing a hydrogel-based hybrid membrane to be used as a platform base to simulate the cornea artificially. Also, the OphthalMimic device suffered design improvements to fit the new membrane and incorporate the moving eyelid. The results confirmed the successful synthesis of the hydrogel components. The membrane's water content (86.25 ± 0.35 %) closely mirrored the human cornea (72 to 85 %). Furthermore, morphological analysis supported the membrane's comparability to the natural cornea. Finally, the performance of different formulations was analysed, demonstrating that the device could differentiate their drainage profile through the viscosity of PLX 14 (79 ± 5 %), PLX 16 (72 ± 4 %), and PLX 20 (57 ± 14 %), and mucoadhesion of PLXCS0.5 (69 ± 1 %), PLX16CS1.0 (65 ± 3 %), PLX16CS1.25 (67 ± 3 %), and the solution (97 ± 8 %). In conclusion, using the hydrogel-based hybrid membrane in the OphthalMimic device represents a significant advancement in the field of ophthalmic drug evaluation, providing a valuable platform for dissolution/release tests. Such a platform aligns with the ethical mandate to reduce animal testing and promises to accelerate the development of safer and more effective ophthalmic drugs.
Assuntos
Hidrogéis , Humanos , Hidrogéis/química , Soluções Oftálmicas/química , Impressão Tridimensional , Córnea/efeitos dos fármacos , Córnea/metabolismo , Administração Oftálmica , Membranas ArtificiaisRESUMO
Artificial intelligence has revolutionized many sectors with unparalleled predictive capabilities supported by machine learning (ML). So far, this tool has not been able to provide the same level of development in pharmaceutical nanotechnology. This review discusses the current data science methodologies related to polymeric drug-loaded nanoparticle production from an innovative multidisciplinary perspective while considering the strictest data science practices. Several methodological and data interpretation flaws were identified by analyzing the few qualified ML studies. Most issues lie in following appropriate analysis steps, such as cross-validation, balancing data, or testing alternative models. Thus, better-planned studies following the recommended data science analysis steps along with adequate numbers of experiments would change the current landscape, allowing the exploration of the full potential of ML.
[Box: see text].
Assuntos
Inteligência Artificial , Ciência de Dados , Aprendizado de Máquina , Nanopartículas , Nanopartículas/química , Humanos , Ciência de Dados/métodos , Nanotecnologia/métodos , Polímeros/químicaRESUMO
Considering the health relevance of Chagas' disease, recent research efforts have focused on developing more efficient drug delivery systems containing nifurtimox (NFX). This paper comprehensively investigates NFX through conformational analysis and spectroscopic characterization. Using a conformer-rotamer ensemble sampling tool (CREST-xtb), five distinct conformers of NFX were sampled within a 3.0 kcal mol-1 relative energy window. Subsequently, such structures were used as inputs for geometry optimization by density functional theory (DFT) at B3LYP-def2-TZVP level of theory. Notably, harmonic vibrational frequencies were calculated to establish an in-depth comparison with experimental results and existing literature for the NFX or similar molecules and functional groups, thereby achieving a widely reasoned assignment of the mid-infrared band absorptions for the first time. Moreover, UV-VIS spectra of NFX were obtained in several solvents, enabling the determination of the molar absorptivity coefficient for the two electronic transitions observed for NFX. Among the aprotic solvents, a bathochromic effect was observed in the function of the dielectric constants. Furthermore, a hypochromic effect was observed when the drug was dissolved in protic solvents. These findings offer crucial support for new drug delivery systems containing NFX while demonstrating the potential of spectrophotometric studies in establishing quality control assays for NFX drug products.
Assuntos
Doença de Chagas , Conformação Molecular , Nifurtimox , Doença de Chagas/tratamento farmacológico , Nifurtimox/química , Espectrofotometria Ultravioleta , Tripanossomicidas/química , Modelos Moleculares , Teoria da Densidade Funcional , Trypanosoma cruzi/efeitos dos fármacos , Solventes/químicaRESUMO
The necessity of animal-free performance tests for novel ophthalmic formulation screening is challenging. For this, we developed and validated a new device to simulate the dynamics and physical-chemical barriers of the eye for in vitro performance tests of topic ophthalmic formulations. The OphthalMimic is a 3D-printed device with an artificial lacrimal flow, a cul-de-sac area, a support base, and a simulated cornea comprised of a polymeric membrane containing poly-vinyl alcohol 10 % (w/v), gelatin 2.5 % (w/v), and different proportions of mucin and poloxamer, i.e., 1:1 (M1), 1:2 (M2), and 2:1 (M3) w/v, respectively. The support base is designed to move between 0° and 50° to replicate the movement of an eyelid. We challenged the model by testing the residence performance of poloxamer®407 16 % and poloxamer®407 16 % + chitosan 1 % (PLX16CS10) gels containing fluconazole. The test was conducted with a simulated tear flow of 1.0 mL.min-1 for 5 min. The OphthalMimic successfully distinguished PLX16 and PLX16C10 formulations based on their fluconazole drainage (M1: 65 ± 14 % and 27 ± 10 %; M2: 58 ± 6 % and 38 ± 9 %; M3: 56 ± 5 % and 38 ± 18 %). In conclusion, the OphthalMimic is a promising tool for comparing the animal-free performance of ophthalmic formulations.
Assuntos
Soluções Oftálmicas , Poloxâmero , Poloxâmero/química , Soluções Oftálmicas/química , Administração Oftálmica , Fluconazol/administração & dosagem , Impressão Tridimensional , Córnea/efeitos dos fármacos , Córnea/metabolismo , Animais , Quitosana/química , Alternativas aos Testes com Animais/métodos , Lágrimas/química , Humanos , Gelatina/químicaRESUMO
Melanoma is responsible for more than 80% of deaths related to skin diseases. Ibrutinib (IBR), a Bruton's tyrosine kinase inhibitor, has been proposed to treat this type of tumor. However, its low solubility, extensive first-pass effect, and severe adverse reactions with systemic administration affect therapeutic success. This study proposes developing and comparing the performance of two compositions of nanostructured lipid carriers (NLCs) to load IBR for the topical management of melanomas in their early stages. Initially, the effectiveness of IBR on melanoma proliferation was evaluated in vitro, and the results confirmed that the drug reduces the viability of human melanoma cells by inducing apoptosis at a dose that does not compromise dermal cells. Preformulation tests were then conducted to characterize the physical compatibility between the drug and the selected components used in NLCs preparation. Sequentially, two lipid compositions were used to develop the NLCs. Formulations were then characterized and subjected to in vitro release and permeation tests on porcine skin. The NLCs containing oleic acid effectively controlled IBR release over 24â¯h compared to the NLCs composed of pomegranate seed oil. Furthermore, the nanoparticles acted as permeation enhancers, increasing the fluidity of the lipids in the stratum corneum, as determined by EPR spectroscopy, which stimulated the IBR penetration more profoundly into the skin. However, the NLCs composition also influenced the permeation promotion factor. Thus, these findings emphasize the importance of the composition of NLCs in controlling and increasing the skin penetration of IBR and pave the way for future advances in melanoma therapy.
Assuntos
Adenina/análogos & derivados , Melanoma , Nanopartículas , Nanoestruturas , Piperidinas , Animais , Suínos , Humanos , Melanoma/tratamento farmacológico , Portadores de Fármacos/química , Pele , Nanoestruturas/química , Nanopartículas/química , Lipídeos/química , Tamanho da PartículaRESUMO
This work aimed to develop a three-dimensional (3D) wearable drug-loaded earring tap to treat affections caused by aesthetic perforations. The initial phase involved a combination of polymers to prepare filaments for fused deposition modeling (FDM) 3D printing using a centroid mixture design. Optimized filament compositions were used in the second phase to produce 3D printed earring taps containing the anti-inflammatory naringenin. Next, samples were assessed via physicochemical assays followed by in vitro skin permeation studies with porcine ear skin. Two filament compositions were selected for the study's second phase: one to accelerate drug release and another with slow drug dissolution. Both filaments demonstrated chemical compatibility and amorphous behavior. The use of the polymer blend to enhance printability has been confirmed by rheological analysis. The 3D devices facilitated naringenin skin penetration, improving drug recovery from the skin's most superficial layer (3D device A) or inner layers (3D device B). Furthermore, the devices significantly decreased transdermal drug delivery compared to the control containing the free drug. Thus, the resulting systems are promising for producing 3D printed earring taps with topical drug delivery and reinforcing the feasibility of patient-centered drug administration through wearable devices.
RESUMO
INTRODUCTION: The success of endodontic treatment depends on the significant disinfection of the root canal system, its irregularities, and dentinal tubules. However, achieving complete disinfection remains challenging, with frequent failures and occurrence of secondary infections. Here, we propose using iontophoresis to increase the penetration and distribution of disinfecting agents into root canals, using methylene blue for proof-of-concept. METHODS: The marker was applied in bovine root canals, and the radial distribution of the dye in the dentinal tubules was evaluated by optical microscopy. Iontophoresis was applied at 0.5 and 1.5 mA for 5 and 15 min. RESULTS: A significant statistical difference (p < 0.05) was observed in the marker penetration between passive and iontophoretic applications. Both current density and application time had an important effect on methylene blue distribution, with a greater efficacy delivery to the apical region achieved after 1.5 mA for 5 min or 0.5 mA for 15 min, showing longer application time can compensate for lower application current. CONCLUSION: Iontophoresis increases the penetration and distribution of methylene blue into bovine root canals and dentinal tubules, including its innermost portions. CLINICAL SIGNIFICANCE: Iontophoresis has shown to be a promising technique for root canal and dentinal tubule disinfection.
Assuntos
Dentina , Iontoforese , Animais , Bovinos , Preparações Farmacêuticas , Cavidade Pulpar , Azul de Metileno/farmacologia , Preparo de Canal Radicular/métodos , Irrigantes do Canal Radicular/farmacologiaRESUMO
Despite nifurtimox (NFX) being a traditional drug for treating Chagas disease, some of its physicochemical properties are still unknown, especially its thermal behavior, which brings important outcomes regarding stability and compatibility. In this work, a comprehensive study of NFX's thermal properties was conducted to assist incremental innovations that can improve the efficacy of this drug in novel pharmaceutical products. For this purpose, thermal analyses associated with spectroscopy and spectrometry techniques were used. DSC analyses revealed that the melt crystallization of the NFX led to its amorphous form with the possible formation of a minor fraction of a different crystalline phase. Coats-Redfern method using TGA results indicated the activation energy of NFX non-isothermal degradation as 348.8 ± 8.2 kJ mol-1, which coincides with the C-NO2 bond dissociation energy of the 2-nitrofuran. Investigation of the isothermal degradation kinetics using FTIR 2D COS showed the possible detachment of radical NO2 and ethylene from the NFX structure, which could affect its mechanism of action. A preliminary mechanism for the thermal degradation of this drug was also proposed. The results enhanced the understanding of NFX's thermal properties, providing valuable insights, especially for developing NFX-based pharmaceutical products that involve thermal processing.
Assuntos
Nifurtimox , Nitrofuranos , Nifurtimox/metabolismo , Nifurtimox/uso terapêutico , Cristalização , Dióxido de Nitrogênio , Preparações FarmacêuticasRESUMO
Conventional treatments for cutaneous leishmaniasis, a neglected vector-borne infectious disease, can frequently lead to serious adverse effects. Paromomycin (PAR), an aminoglycoside antibiotic, has been suggested for the topical treatment of disease-related lesions, but even when formulated in high drug-loading dosage forms, presents controversial efficacy. The presence of five ionizable amino groups hinder its passive cutaneous penetration but make PAR an excellent candidate for iontophoretic delivery. The objective of this study was to verify the feasibility of using iontophoresis for cutaneous PAR delivery and to propose a topical passive drug delivery system that could be applied between iontophoretic treatments. For this, in vitro iontophoretic experiments evaluated different application durations (10, 30, and 360 min), current densities (0.1, 0.25, and 0.5 mA/cm2), PAR concentrations (0.5 and 1.0 %), and skin models (intact and impaired porcine skin). In addition, 1 % PAR hydrogel had its penetration profile compared to 15 % PAR ointment in passive transport. Results showed iontophoresis could deliver suitable PAR amounts to dermal layers, even in short times and with impaired skin. Biodistribution assays showed both iontophoretic transport and the proposed hydrogel delivered higher PAR amounts to deeper skin layers than conventional ointment, even though applying 15 times less drug. To our knowledge, this is the first report of PAR drug delivery enhancement by iontophoresis. In summary, the association of iontophoresis with a topical application of PAR gel seems appropriate for improving cutaneous leishmaniasis treatment.
Assuntos
Leishmaniose Cutânea , Paromomicina , Animais , Suínos , Paromomicina/metabolismo , Paromomicina/farmacologia , Iontoforese/métodos , Distribuição Tecidual , Pomadas/metabolismo , Pele/metabolismo , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Leishmaniose Cutânea/tratamento farmacológico , Hidrogéis/farmacologiaRESUMO
Alopecia areata is managed with oral corticosteroids, which has known side effects for patients. Given that a topical application of formulations containing a corticoid and a substance controlling hair loss progression could reduce or eliminate such adverse effects and increase the patient's adherence to the treatment, this study prepares polymeric and lipidic nanoparticles (PNPs and NLCs) to co-entrap minoxidil and betamethasone and compares the follicular drug delivery provided by topical application of these nanoparticles. The prepared PNPs loaded 99.1 ± 13.0% minoxidil and 70.2 ± 12.8% betamethasone, while the NLCs entrapped 99.4 ± 0.1 minoxidil and 80.7 ± 0.1% betamethasone. PNPs and NLCs presented diameters in the same range, varying from 414 ± 10 nm to 567 ± 30 nm. The thermal analysis revealed that the production conditions favor the solubilization of the drugs in the nanoparticles, preserving their stability. In in vitro permeation studies with porcine skin, PNPs provided a 2.6-fold increase in minoxidil penetration into the follicular casts compared to the control and no remarkable difference in terms of betamethasone; in contrast, NLCs provided a significant (specifically, a tenfold) increase in minoxidil penetration into the hair follicles compared to the control, and they delivered higher concentrations of betamethasone in hair follicles than both PNPs and the control. Neither PNPs nor NLCs promoted transdermal permeation of the drugs to the receptor solution, which should favor a topical therapy. Furthermore, both nanoparticles targeted approximately 50% of minoxidil delivery to the follicular casts and NLCs targeted 74% of betamethasone delivery to the hair follicles. In conclusion, PNPs and NLCs are promising drug delivery systems for enhancing follicular targeting of drugs, but NLCs showed superior performance for lipophilic drugs.
RESUMO
Animal models are still used in the research and development of ophthalmic drug products, mainly due to the difficulty in simulating natural physiological conditions with in vitro models, as there is a lack of dynamic protection mechanisms. Therefore, developing alternative ophthalmic models that evaluate drug penetration in the cornea while applying dynamic protection barriers is a contemporary challenge. This study aimed to develop a dynamic ex vivo model using porcine eyes with a simulated lacrimal flow to evaluate the performance of pharmaceutical drug products. A glass donor cell to support a simulated tear flow was designed, optimized, and custom-made. The system was challenged with different formulations (with fluconazole) including excipients with different viscosities (poloxamer 407) and mucoadhesive properties (chitosan). The results were compared to those obtained from a conventional excised cornea model mounted in Franz-type diffusion cells. The dynamic model could differentiate formulations, while the static model did not, overestimating ex vivo drug penetrated amounts. Hence, the dynamic model with simulated tear flow showed to be a simple and promising new alternative method for the drug penetration of ophthalmic formulations that ultimately can reduce the number of animals used in research.
RESUMO
INTRODUCTION: Although the administration of drugs on the skin is a safe and noninvasive therapeutic alternative, producing formulations capable of disrupting the cutaneous barriers is still a challenge. In this scenario, extrusion-based techniques have emerged as disruptive technologies to ensure unique drug-excipient interactions that facilitate drug skin diffusion for systemic or local effect and even mean the key to obtain viable industrial products. AREAS COVERED: This article presents a comprehensive overview of extrusion-based techniques in developing pharmaceutical dosage forms for topical or transdermal drug delivery. First, the theoretical basis of how extrusion-based techniques can optimize the permeation of drugs through the skin is examined. Then, the current state-of-the-art of drug products developed by extrusion-based techniques, specifically by hot-melt extrusion (HME) and fused deposition modeling (FDM) 3D printing, are discussed and contrasted with the current pharmaceutical processes. EXPERT OPINION: A wide variety of pharmaceutical products can be obtained using HME and FDM 3D printing, including new dosage forms designed for a perfect anatomical fit. Despite the limitations of pharmaceutical products produced with HME and FDM 3D printing regarding thermal stability and available excipients, the advantages in industrial adaptability and improved bioavailability allied with patient-match devices certainly deserve full attention and investment.
Assuntos
Tecnologia de Extrusão por Fusão a Quente , Tecnologia Farmacêutica , Humanos , Tecnologia Farmacêutica/métodos , Preparações Farmacêuticas , Composição de Medicamentos/métodos , Administração Cutânea , Excipientes , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , ComprimidosRESUMO
The in-situ formation of nanoparticles from polymer-based solid medicines, although previously described, has been overlooked despite its potential to interfere with oral drug bioavailability. Such polymeric pharmaceuticals are becoming increasingly common on the market and can become even more popular due to the dizzying advance of 3D printing medicines. Hence, this work aimed to study this phenomenon during the dissolution of 3D printed tablets produced with three different polymers, hydroxypropylmethylcellulose acetate succinate (HPMCAS), polyvinyl alcohol (PVA), and Eudragit RL PO® (EUD RL) combined with plasticizers and the model drug naringenin (NAR). The components' interaction, dissolution behavior, and characteristics of the formed particles were investigated employing thermal, spectroscopic, mechanical, and chromatographic assays. All the systems generated stable spherical-shaped particles throughout 24 h, encapsulating over 25% of NAR. Results suggest encapsulation efficiencies variations may depend on interactions between polymer-drug, drug-plasticizer, and polymer-plasticizer, which formed stable nanoparticles even in the drug absence, as observed with the HPMCAS and EUD RL formulations. Additionally, components solubility in the medium and previous formulation treatments are also a decisive factor for nanoparticle formation. In particular, the treatment provided by hot-melt extrusion and FDM 3D printing affected the dissolution efficiency enhancing the interaction between the components, reverberating on particle size and particle formation kinetics mainly for HPMCAS and EUD RL. In conclusion, the 3D printing process influences the in-situ formation of nanoparticles, which can directly affect oral drug bioavailability and needs to be monitored.
Assuntos
Plastificantes , Polímeros , Liberação Controlada de Fármacos , Polímeros/química , Solubilidade , Comprimidos/química , Impressão Tridimensional , Tecnologia Farmacêutica/métodosRESUMO
Nanotechnology has been investigated for treatments of hair follicle disorders mainly because of the natural accumulation of solid nanoparticles in the follicular openings following a topical application, which provides a drug "targeting effect". Despite the promising results regarding the therapeutic efficacy of topically applied nanoparticles, the literature has often presented controversial results regarding the targeting of hair follicle potential of nanoformulations. A closer look at the published works shows that study parameters such as the type of skin model, skin sections analyzed, employed controls, or even the extraction methodologies differ to a great extent among the studies, producing either unreliable results or precluding comparisons altogether. Hence, the present study proposes to review different skin models and methods for quantitative and qualitative analysis of follicular penetration of nano-entrapped drugs and their influence on the obtained results, as a way of providing more coherent study protocols for the intended application.
RESUMO
Dacarbazine (DTIC) is a chemotherapeutic drug currently used for the systemic treatment of melanomas. Considering the easy access to these tumors, a topical route of drug administration could provide a more comfortable and less toxic treatment. However, DTIC quantification aiming at the design of topical formulations is challenging, pondering all the interferents present in the drug samples recovered from the skin. Hence, this work intended to validate a selective chromatographic method for DTIC determination in skin permeation studies. A reversed-phase C18 column was used as a stationary phase, and gradient elution of a mobile phase consisting of methanol and pH 6.5 sodium phosphate monohydrate buffer (0.01 mol/L) at a flow rate of 1.0 mL/min was implemented. DTIC was detected at 364 nm. The method was selective against skin interferents, linear (r = 0.9995) in a concentration range of 1.0-15.0 µg/mL, precise with an overall variation coefficient lower than 3.8%, accurate achieving recovery from the skin layers within 91-112%, and sensitive for the proposed application (detection limit = 0.10 µg/ mL, quantification limit = 0.30 µg/mL). Furthermore, the analytical method was successfully tested in in vitro skin permeation studies. In conclusion, the developed method is appropriate for DTIC analysis from the skin sample matrix.