Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 355(6329): 1081-1084, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28280206

RESUMO

Nucleosomes play important structural and regulatory roles by tightly wrapping the DNA that constitutes the metazoan genome. The Polycomb group (PcG) proteins modulate nucleosomes to maintain repression of key developmental genes, including Hox genes whose temporal and spatial expression is tightly regulated to guide patterning of the anterior-posterior body axis. CBX2, a component of the mammalian Polycomb repressive complex 1 (PRC1), contains a compaction region that has the biochemically defined activity of bridging adjacent nucleosomes. Here, we demonstrate that a functional compaction region is necessary for proper body patterning, because mutating this region leads to homeotic transformations similar to those observed with PcG loss-of-function mutations. We propose that CBX2-driven nucleosome compaction is a key mechanism by which PcG proteins maintain gene silencing during mouse development.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Genes Homeobox , Nucleossomos/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Mutantes , Mutação , Nucleossomos/genética , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Esqueleto/crescimento & desenvolvimento
2.
Genome Res ; 24(2): 251-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24310001

RESUMO

Nucleosome occupancy plays a key role in regulating access to eukaryotic genomes. Although various chromatin regulatory complexes are known to regulate nucleosome occupancy, the role of DNA sequence in this regulation remains unclear, particularly in mammals. To address this problem, we measured nucleosome distribution at high temporal resolution in human cells at hundreds of genes during the reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV). We show that nucleosome redistribution peaks at 24 h post-KSHV reactivation and that the nucleosomal redistributions are widespread and transient. To clarify the role of DNA sequence in these nucleosomal redistributions, we compared the genes with altered nucleosome distribution to a sequence-based computer model and in vitro-assembled nucleosomes. We demonstrate that both the predicted model and the assembled nucleosome distributions are concordant with the majority of nucleosome redistributions at 24 h post-KSHV reactivation. We suggest a model in which loci are held in an unfavorable chromatin architecture and "spring" to a transient intermediate state directed by DNA sequence information. We propose that DNA sequence plays a more considerable role in the regulation of nucleosome positions than was previously appreciated. The surprising findings that nucleosome redistributions are widespread, transient, and DNA-directed shift the current perspective regarding regulation of nucleosome distribution in humans.


Assuntos
Cromatina/genética , Herpesvirus Humano 8/genética , Nucleossomos/genética , Ativação Viral/genética , Simulação por Computador , Genoma Humano , Humanos , Modelos Genéticos , Análise de Sequência de DNA
3.
Mol Cell ; 46(6): 784-96, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22749399

RESUMO

Epigenetic regulation may involve heritable chromatin states, but how chromatin features can be inherited through DNA replication is incompletely understood. We address this question using cell-free replication of chromatin. Previously, we showed that a Polycomb group complex, PRC1, remains continuously associated with chromatin through DNA replication. Here we investigate the mechanism of persistence. We find that a single PRC1 subunit, Posterior sex combs (PSC), can reconstitute persistence through DNA replication. PSC binds nucleosomes and self-interacts, bridging nucleosomes into a stable, oligomeric structure. Within these structures, individual PSC-chromatin contacts are dynamic. Stable association of PSC with chromatin, including through DNA replication, depends on PSC-PSC interactions. Our data suggest that labile individual PSC-chromatin contacts allow passage of the DNA replication machinery while PSC-PSC interactions prevent PSC from dissociating, allowing it to rebind to replicated chromatin. This mechanism may allow inheritance of chromatin proteins including PRC1 through DNA replication to maintain chromatin states.


Assuntos
Replicação do DNA , DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Repressoras/metabolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Drosophila/metabolismo , Humanos , Nucleossomos/metabolismo , Proteínas do Grupo Polycomb , Proteínas Repressoras/química
4.
Genes Dev ; 25(20): 2210-21, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22012622

RESUMO

Polycomb group (PcG) proteins are required for the epigenetic maintenance of developmental genes in a silent state. Proteins in the Polycomb-repressive complex 1 (PRC1) class of the PcG are conserved from flies to humans and inhibit transcription. One hypothesis for PRC1 mechanism is that it compacts chromatin, based in part on electron microscopy experiments demonstrating that Drosophila PRC1 compacts nucleosomal arrays. We show that this function is conserved between Drosophila and mouse PRC1 complexes and requires a region with an overrepresentation of basic amino acids. While the active region is found in the Posterior Sex Combs (PSC) subunit in Drosophila, it is unexpectedly found in a different PRC1 subunit, a Polycomb homolog called M33, in mice. We provide experimental support for the general importance of a charged region by predicting the compacting capability of PcG proteins from species other than Drosophila and mice and by testing several of these proteins using solution assays and microscopy. We infer that the ability of PcG proteins to compact chromatin in vitro can be predicted by the presence of domains of high positive charge and that PRC1 components from a variety of species conserve this highly charged region. This supports the hypothesis that compaction is a key aspect of PcG function.


Assuntos
Cromatina/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , Sequência Conservada/genética , Drosophila melanogaster/classificação , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolução Molecular , Camundongos , Mutação , Filogenia , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Relação Estrutura-Atividade
5.
Mol Cell ; 40(6): 939-53, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21172659

RESUMO

Polycomb proteins play essential roles in stem cell renewal and human disease. Recent studies of HOX genes and X inactivation have provided evidence for RNA cofactors in Polycomb repressive complex 2 (PRC2). Here we develop a RIP-seq method to capture the PRC2 transcriptome and identify a genome-wide pool of >9000 PRC2-interacting RNAs in embryonic stem cells. The transcriptome includes antisense, intergenic, and promoter-associated transcripts, as well as many unannotated RNAs. A large number of transcripts occur within imprinted regions, oncogene and tumor suppressor loci, and stem cell-related bivalent domains. We provide evidence for direct RNA-protein interactions, most likely via the Ezh2 subunit. We also identify Gtl2 RNA as a PRC2 cofactor that directs PRC2 to the reciprocally imprinted Dlk1 coding gene. Thus, Polycomb proteins interact with a genome-wide family of RNAs, some of which may be used as biomarkers and therapeutic targets for human disease.


Assuntos
Genoma/genética , Imunoprecipitação/métodos , RNA/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas do Grupo Polycomb , Ligação Proteica , Proteínas/genética , RNA/genética , RNA Longo não Codificante , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Reprodutibilidade dos Testes , Transcrição Gênica/genética
6.
Nucleic Acids Res ; 33(16): 5181-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16155187

RESUMO

Polycomb-group response elements (PREs) are DNA elements through which the Polycomb-group (PcG) of transcriptional repressors act. Many of the PcG proteins are associated with two protein complexes that repress gene expression by modifying chromatin. Both of these protein complexes specifically associate with PREs in vivo, however, it is not known how they are recruited or held at the PRE. PREs are complex elements, made up of binding sites for many proteins. Our laboratory has been working to define all the sequences and DNA binding proteins required for the activity of a 181 bp PRE from the Drosophila engrailed gene. Here we show that one of the sites necessary for PRE activity, Site 2, can be bound by members of the Sp1/KLF family of zinc finger proteins. There are 10 Sp1/KLF family members in Drosophila, and nine of them bind to Site 2. We derive a consensus binding site for the Sp1/KLF Drosophila family members and show that this consensus sequence is present in most of the molecularly characterized PREs. These data suggest that one or more Sp1/KLF family members play a role in PRE function in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas de Homeodomínio/genética , Proteínas Repressoras/metabolismo , Elementos de Resposta , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Drosophila/embriologia , Dados de Sequência Molecular , Complexo Repressor Polycomb 1 , Alinhamento de Sequência , Fator de Transcrição Sp1/química , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA