Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661931

RESUMO

Streptococcus gordonii is an early colonizer of the oral cavity. Although a variety of S. gordonii adherence mechanisms have been described, current dogma is that the major receptor for S. gordonii is sialic acid. However, as many bacterial species in the oral cavity produce neuraminidase that can cleave terminal sialic acid, it is unclear whether S. gordonii relies on sialic acid for adherence to oral surfaces or if this species has developed alternative binding strategies. Previous studies have examined adherence to immobilized glycoconjugates and identified binding to additional glycans, but no prior studies have defined the contribution of these different glycan structures in adherence to oral epithelial cells. We determined that the majority of S. gordonii strains tested did not rely on sialic acid for efficient adherence. In fact, adherence of some strains was significantly increased following neuraminidase treatment. Further investigation of representative strains that do not rely on sialic acid for adherence revealed binding not only to sialic acid via the serine-rich repeat protein GspB but also to ß-1,4-linked galactose. Adherence to this carbohydrate occurs via an unknown adhesin distinct from those utilized by Streptococcus oralis and Streptococcus pneumoniae Demonstrating the potential biological relevance of binding to this cryptic receptor, we established that S. oralis increases S. gordonii adherence in a neuraminidase-dependent manner. These data suggest that S. gordonii has evolved to simultaneously utilize both terminal and cryptic receptors in response to the production of neuraminidase by other species in the oral environment.


Assuntos
Adesinas Bacterianas/fisiologia , Aderência Bacteriana , Proteínas de Transporte/fisiologia , Ácido N-Acetilneuramínico/fisiologia , Neuraminidase/biossíntese , Streptococcus gordonii/fisiologia , Galactose/metabolismo , Hemaglutininas Virais , Humanos , Mucosa Bucal/microbiologia , Streptococcus oralis/fisiologia
2.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27993975

RESUMO

Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis, like Streptococcus gordonii and Streptococcus sanguinis, binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed ß-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to ß-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind ß-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiologia , Neuraminidase/metabolismo , Streptococcus oralis/fisiologia , Galactose/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Streptococcus oralis/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA