Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Immunol ; 203(4): 853-863, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31270150

RESUMO

Cholesterol crystals (CC) are strong activators of complement and could potentially be involved in thromboinflammation through complement-coagulation cross-talk. To explore the coagulation-inducing potential of CC, we performed studies in lepirudin-based human whole blood and plasma models. In addition, immunohistological examinations of brain thrombi and vulnerable plaque material from patients with advanced carotid atherosclerosis were performed using polarization filter reflected light microscopy to identify CC. In whole blood, CC exposure induced a time- and concentration-dependent generation of prothrombin fragment 1+2 (PTF1.2), tissue factor (TF) mRNA synthesis, and monocyte TF expression. Blocking Abs against TF abolished CC-mediated coagulation, thus indicating involvement of the TF-dependent pathway. Blockade of FXII by corn trypsin inhibitor had a significant inhibitory effect on CC-induced PTF1.2 in platelet-free plasma, although the overall activation potential was low. CC exposure did not induce platelet aggregation, TF microparticle induction, or TF on granulocytes or eosinophils. Inhibition of complement C3 by CP40 (compstatin), C5 by eculizumab, or C5aR1 by PMX53 blocked CC-induced PTF1.2 by 90% and reduced TF+ monocytes from 18-20 to 1-2%. The physiologic relevance was supported by birefringent CC structures adjacent to monocytes (CD14), TF, and activated complement iC3b and C5b-9 in a human brain thrombus. Furthermore, monocyte influx and TF induction in close proximity to CC-rich regions with activated complement were found in a vulnerable plaque. In conclusion, CC could be active, releasable contributors to thrombosis by inducing monocyte TF secondary to complement C5aR1 signaling.


Assuntos
Coagulação Sanguínea/imunologia , Colesterol/imunologia , Ativação do Complemento/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Tromboplastina/biossíntese , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/metabolismo , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Tromboplastina/imunologia , Trombose/imunologia , Trombose/metabolismo
3.
PLoS Pathog ; 15(3): e1007684, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883606

RESUMO

Phagocytosis is a complex process that eliminates microbes and is performed by specialised cells such as macrophages. Toll-like receptor 4 (TLR4) is expressed on the surface of macrophages and recognizes Gram-negative bacteria. Moreover, TLR4 has been suggested to play a role in the phagocytosis of Gram-negative bacteria, but the mechanisms remain unclear. Here we have used primary human macrophages and engineered THP-1 monocytes to show that the TLR4 sorting adapter, TRAM, is instrumental for phagocytosis of Escherichia coli as well as Staphylococcus aureus. We find that TRAM forms a complex with Rab11 family interacting protein 2 (FIP2) that is recruited to the phagocytic cups of E. coli. This promotes activation of the actin-regulatory GTPases Rac1 and Cdc42. Our results show that FIP2 guided TRAM recruitment orchestrates actin remodelling and IRF3 activation, two events that are both required for phagocytosis of Gram-negative bacteria.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Fagocitose/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/fisiologia , Endocitose , Endossomos , Escherichia coli/patogenicidade , Células HEK293 , Humanos , Fator Regulador 3 de Interferon , Lipopolissacarídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide , Cultura Primária de Células , Transporte Proteico , Transdução de Sinais , Staphylococcus aureus/patogenicidade , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Proteína cdc42 de Ligação ao GTP , Proteínas rab de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP
4.
Acta Biomater ; 58: 158-167, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576714

RESUMO

Alginate microspheres are presently under evaluation for future cell-based therapy. Their ability to induce harmful host reactions needs to be identified for developing the most suitable devices and efficient prevention strategies. We used a lepirudin based human whole blood model to investigate the coagulation potentials of alginate-based microspheres: alginate microbeads (Ca/Ba Beads), alginate poly-l-lysine microcapsules (APA and AP microcapsules) and sodium alginate-sodium cellulose sulfate-poly(methylene-co-cyanoguanidine) microcapsules (PMCG microcapsules). Coagulation activation measured by prothrombin fragments 1+2 (PTF1.2) was rapidly and markedly induced by the PMCG microcapsules, delayed and lower induced by the APA and AP microcapsules, and not induced by the Ca/Ba Beads. Monocytes tissue factor (TF) expression was similarly activated by the microcapsules, whereas not by the Ca/Ba Beads. PMCG microcapsules-induced PTF1.2 was abolished by FXII inhibition (corn trypsin inhibitor), thus pointing to activation through the contact pathway. PTF1.2 induced by the AP and APA microcapsules was inhibited by anti-TF antibody, pointing to a TF driven coagulation. The TF induced coagulation was inhibited by the complement inhibitors compstatin (C3 inhibition) and eculizumab (C5 inhibition), revealing a complement-coagulation cross-talk. This is the first study on the coagulation potentials of alginate microspheres, and identifies differences in activation potential, pathways and possible intervention points. STATEMENT OF SIGNIFICANCE: Alginate microcapsules are prospective candidate materials for cell encapsulation therapy. The material surface must be free of host cell adhesion to ensure free diffusion of nutrition and oxygen to the encapsulated cells. Coagulation activation is one gateway to cellular overgrowth through deposition of fibrin. Herein we used a physiologically relevant whole blood model to investigate the coagulation potential of alginate microcapsules and microbeads. The coagulation potentials and the pathways of activation were depending on the surface properties of the materials. Activation of the complement system could also be involved, thus emphasizing a complement-coagulation cross-talk. Our findings points to complement and coagulation inhibition as intervention point for preventing host reactions, and enhance functional cell-encapsulation devices.


Assuntos
Alginatos , Anticorpos Monoclonais Humanizados , Coagulação Sanguínea/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Fator XII/metabolismo , Microesferas , Peptídeos Cíclicos , Proteínas de Plantas , Alginatos/química , Alginatos/farmacologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Cápsulas , Feminino , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Masculino , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Tromboplastina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA