Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Mol Cancer Ther ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39233476

RESUMO

Oxidative phosphorylation (OXPHOS) is an essential metabolic process for cancer proliferation and therapy resistance. The ClpXP complex maintains mitochondrial proteostasis by degrading misfolded proteins. Madera Therapeutics has developed a class of highly potent and selective small-molecule activators (TR compounds) of the ClpXP component caseinolytic peptidase proteolytic subunit (ClpP). This approach to cancer therapy eliminates substrate recognition and activates non-specific protease function within mitochondria, which has shown encouraging preclinical efficacy in multiple malignancies. The class-leading compound, TR-107, has demonstrated significantly improved potency in ClpP affinity and activation and enhanced pharmacokinetic properties over the multi-targeting clinical agent ONC201. In this study, we investigate the in vitro efficacy of TR-107 against human colorectal cancer (CRC) cells. TR-107 inhibited CRC cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest at low nanomolar concentrations. Mechanistically, TR-107 downregulated the expression of proteins involved in the mitochondrial unfolded protein response (UPRmt) and mtDNA transcription and translation. TR-107 attenuated oxygen consumption rate and glycolytic compensation, confirming inactivation of OXPHOS and a reduction in total cellular respiration. Multi-omics analysis of treated cells indicated a downregulation of respiratory chain complex subunits and an upregulation of mitophagy and ferroptosis pathways. Further evaluation of ferroptosis revealed a depletion of antioxidant and iron toxicity defenses that could potentiate sensitivity to combinatory chemotherapeutics. Together, this study provides evidence and insight into the subcellular mechanisms employed by CRC cells in response to potent ClpP agonism. Our findings demonstrate a productive approach to disrupting mitochondrial metabolism, supporting the translational potential of TR-107.

2.
Mol Ther Oncol ; 32(3): 200834, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39045029

RESUMO

Tumor-homing neural stem cell (NSC) therapy is emerging as a promising treatment for aggressive cancers of the brain. Despite their success, developing tumor-homing NSC therapy therapies that maintain durable tumor suppression remains a challenge. Herein, we report a synergistic combination regimen where the novel small molecule TR-107 augments NSC-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy (hiNeuroS-TRAIL) in models of the incurable brain cancer glioblastoma (GBM) in vitro. We report that the combination of hiNeuroS-TRAIL and TR-107 synergistically upregulated caspase markers and restored sensitivity to the intrinsic apoptotic pathway by significantly downregulating inhibitory pathways associated with chemoresistance and radioresistance in the TRAIL-resistant LN229 cell line. This combination also showed robust tumor suppression and enhanced survival of mice bearing human xenografts of both solid and invasive GBMs. These findings elucidate a novel combination regimen and suggest that the combination of these clinically relevant agents may represent a new therapeutic option with increased efficacy for patients with GBM.

3.
Science ; 384(6700): eadk0775, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843331

RESUMO

How the KRAS oncogene drives cancer growth remains poorly understood. Therefore, we established a systemwide portrait of KRAS- and extracellular signal-regulated kinase (ERK)-dependent gene transcription in KRAS-mutant cancer to delineate the molecular mechanisms of growth and of inhibitor resistance. Unexpectedly, our KRAS-dependent gene signature diverges substantially from the frequently cited Hallmark KRAS signaling gene signature, is driven predominantly through the ERK mitogen-activated protein kinase (MAPK) cascade, and accurately reflects KRAS- and ERK-regulated gene transcription in KRAS-mutant cancer patients. Integration with our ERK-regulated phospho- and total proteome highlights ERK deregulation of the anaphase promoting complex/cyclosome (APC/C) and other components of the cell cycle machinery as key processes that drive pancreatic ductal adenocarcinoma (PDAC) growth. Our findings elucidate mechanistically the critical role of ERK in driving KRAS-mutant tumor growth and in resistance to KRAS-ERK MAPK targeted therapies.


Assuntos
Carcinoma Ductal Pancreático , MAP Quinases Reguladas por Sinal Extracelular , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Mutação , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Transcriptoma , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células HEK293
4.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843329

RESUMO

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Neoplasias Pancreáticas , Fosfoproteínas , Proteoma , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células HEK293
5.
PLoS One ; 18(11): e0294065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943821

RESUMO

Pancreatic cancer is one of the leading causes of cancer deaths, with pancreatic ductal adenocarcinoma (PDAC) being the most common subtype. Advanced stage diagnosis of PDAC is common, causing limited treatment opportunities. Gemcitabine is a frequently used chemotherapeutic agent which can be used as a monotherapy or in combination. However, tumors often develop resistance to gemcitabine. Previous studies show that the proto-oncogene PIM kinases (PIM1 and PIM3) are upregulated in PDAC compared to matched normal tissue and are related to chemoresistance and PDAC cell growth. The PIM kinases are also involved in the PI3K/AKT/mTOR pathway to promote cell survival. In this study, we evaluate the effect of the novel multikinase PIM/PI3K/mTOR inhibitor, AUM302, and commercially available PIM inhibitor, TP-3654. Using five human PDAC cell lines, we found AUM302 to be a potent inhibitor of cell proliferation, cell viability, cell cycle progression, and phosphoprotein expression, while TP-3654 was less effective. Significantly, AUM302 had a strong impact on the viability of gemcitabine-resistant PDAC cells. Taken together, these results demonstrate that AUM302 exhibits antitumor activity in human PDAC cells and thus has the potential to be an effective drug for PDAC therapy.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores do Crescimento/farmacologia , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/patologia , Gencitabina , Serina-Treonina Quinases TOR , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
6.
J Proteome Res ; 22(10): 3159-3177, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37634194

RESUMO

Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an attractive class of compounds to repurpose for host-targeted therapies against emerging coronavirus infections. To further understand the host kinome response to betacoronavirus infection, we employed multiplex inhibitory bead mass spectrometry (MIB-MS) following MERS-CoV and SARS-CoV-2 infection of human lung epithelial cell lines. Our MIB-MS analyses revealed activation of mTOR and MAPK signaling following MERS-CoV and SARS-CoV-2 infection, respectively. SARS-CoV-2 host kinome responses were further characterized using paired phosphoproteomics, which identified activation of MAPK, PI3K, and mTOR signaling. Through chemogenomic screening, we found that clinically relevant PI3K/mTOR inhibitors were able to inhibit coronavirus replication at nanomolar concentrations similar to direct-acting antivirals. This study lays the groundwork for identifying broad-acting, host-targeted therapies to reduce betacoronavirus replication that can be rapidly repurposed during future outbreaks and epidemics. The proteomics, phosphoproteomics, and MIB-MS datasets generated in this study are available in the Proteomics Identification Database (PRIDE) repository under project identifiers PXD040897 and PXD040901.


Assuntos
COVID-19 , Hepatite C Crônica , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Antivirais/farmacologia , Inibidores de MTOR , Fosfatidilinositol 3-Quinases , SARS-CoV-2 , Replicação Viral , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Serina-Treonina Quinases TOR
7.
Biomedicines ; 11(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371693

RESUMO

Transcription of the mitochondrial genome is essential for the maintenance of oxidative phosphorylation (OXPHOS) and other functions directly related to this unique genome. Considerable evidence suggests that mitochondrial transcription is dysregulated in cancer and cancer metastasis and contributes significantly to cancer cell metabolism. Recently, inhibitors of the mitochondrial DNA-dependent RNA polymerase (POLRMT) were identified as potentially attractive new anti-cancer compounds. These molecules (IMT1, IMT1B) inactivate cancer cell metabolism through reduced transcription of mitochondrially-encoded OXPHOS subunits such as ND1-5 (Complex I) and COI-IV (Complex IV). Studies from our lab have discovered small molecule regulators of the mitochondrial matrix caseinolytic protease (ClpP) as probable inhibitors of mitochondrial transcription. These compounds activate ClpP proteolysis and lead to the rapid depletion of POLRMT and other matrix proteins, resulting in inhibition of mitochondrial transcription and growth arrest. Herein we present a comparison of POLRMT inhibition and ClpP activation, both conceptually and experimentally, and evaluate the results of these treatments on mitochondrial transcription, inhibition of OXPHOS, and ultimately cancer cell growth. We discuss the potential for targeting mitochondrial transcription as a cancer cell vulnerability.

8.
Cell Rep Med ; 4(6): 101042, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37192626

RESUMO

Functional precision medicine platforms are emerging as promising strategies to improve pre-clinical drug testing and guide clinical decisions. We have developed an organotypic brain slice culture (OBSC)-based platform and multi-parametric algorithm that enable rapid engraftment, treatment, and analysis of uncultured patient brain tumor tissue and patient-derived cell lines. The platform has supported engraftment of every patient tumor tested to this point: high- and low-grade adult and pediatric tumor tissue rapidly establishes on OBSCs among endogenous astrocytes and microglia while maintaining the tumor's original DNA profile. Our algorithm calculates dose-response relationships of both tumor kill and OBSC toxicity, generating summarized drug sensitivity scores on the basis of therapeutic window and allowing us to normalize response profiles across a panel of U.S. Food and Drug Administration (FDA)-approved and exploratory agents. Summarized patient tumor scores after OBSC treatment show positive associations to clinical outcomes, suggesting that the OBSC platform can provide rapid, accurate, functional testing to ultimately guide patient care.


Assuntos
Neoplasias Encefálicas , Humanos , Criança , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Encéfalo
9.
iScience ; 26(6): 106780, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193127

RESUMO

Among all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed "discontinuous transcription" that results in the production of a set of 3'-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active. The data support the hypothesis that the coronavirus proteome is much vaster than previously noted in the literature.

10.
Front Pharmacol ; 14: 1136317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063293

RESUMO

ClpP activators ONC201 and related small molecules (TR compounds, Madera Therapeutics), have demonstrated significant anti-cancer potential in vitro and in vivo studies, including clinical trials for refractory solid tumors. Though progress has been made in identifying specific phenotypic outcomes following ClpP activation, the exact mechanism by which ClpP activation leads to broad anti-cancer activity has yet to be fully elucidated. In this study, we utilized a multi-omics approach to identify the ClpP-dependent proteomic, transcriptomic, and metabolomic changes resulting from ONC201 or the TR compound TR-57 in triple-negative breast cancer cells. Applying mass spectrometry-based methods of proteomics and metabolomics, we identified ∼8,000 proteins and 588 metabolites, respectively. From proteomics data, 113 (ONC201) and 191 (TR-57) proteins significantly increased and 572 (ONC201) and 686 (TR-57) proteins significantly decreased in this study. Gene ontological (GO) analysis revealed strong similarities between proteins up- or downregulated by ONC201 or TR-57 treatment. Notably, this included the downregulation of many mitochondrial processes and proteins, including mitochondrial translation and mitochondrial matrix proteins. We performed a large-scale transcriptomic analysis of WT SUM159 cells, identifying ∼7,700 transcripts (746 and 1,100 significantly increasing, 795 and 1,013 significantly decreasing in ONC201 and TR-57 treated cells, respectively). Less than 21% of these genes were affected by these compounds in ClpP null cells. GO analysis of these data demonstrated additional similarity of response to ONC201 and TR-57, including a decrease in transcripts related to the mitochondrial inner membrane and matrix, cell cycle, and nucleus, and increases in other nuclear transcripts and transcripts related to metal-ion binding. Comparison of response between both compounds demonstrated a highly similar response in all -omics datasets. Analysis of metabolites also revealed significant similarities between ONC201 and TR-57 with increases in α-ketoglutarate and 2-hydroxyglutaric acid and decreased ureidosuccinic acid, L-ascorbic acid, L-serine, and cytidine observed following ClpP activation in TNBC cells. Further analysis identified multiple pathways that were specifically impacted by ClpP activation, including ATF4 activation, heme biosynthesis, and the citrulline/urea cycle. In summary the results of our studies demonstrate that ONC201 and TR-57 induce highly similar and broad effects against multiple mitochondrial processes required for cell proliferation.

11.
Structure ; 31(2): 185-200.e10, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586405

RESUMO

The mitochondrial ClpP protease is responsible for mitochondrial protein quality control through specific degradation of proteins involved in several metabolic processes. ClpP overexpression is also required in many cancer cells to eliminate reactive oxygen species (ROS)-damaged proteins and to sustain oncogenesis. Targeting ClpP to dysregulate its function using small-molecule agonists is a recent strategy in cancer therapy. Here, we synthesized imipridone-derived compounds and related chemicals, which we characterized using biochemical, biophysical, and cellular studies. Using X-ray crystallography, we found that these compounds have enhanced binding affinities due to their greater shape and charge complementarity with the surface hydrophobic pockets of ClpP. N-terminome profiling of cancer cells upon treatment with one of these compounds revealed the global proteomic changes that arise and identified the structural motifs preferred for protein cleavage by compound-activated ClpP. Together, our studies provide the structural and molecular basis by which dysregulated ClpP affects cancer cell viability and proliferation.


Assuntos
Mitocôndrias , Proteômica , Mitocôndrias/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteólise
12.
Cell Rep ; 41(5): 111580, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323248

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia caused by mutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia. Here, we perform multi-omic profiling in sacsin knockout (KO) cells and identify alterations in microtubule dynamics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA structure, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cerebellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins is a causal molecular deficit in ARSACS.


Assuntos
Ataxia Cerebelar , Camundongos , Animais , Integrinas/genética , Proteínas de Choque Térmico/metabolismo , Ataxia/genética , Mutação
13.
Cancer Res Commun ; 2(10): 1144-1161, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36388465

RESUMO

Mitochondria are multifaceted organelles which are important for bioenergetics, biosynthesis and signaling in metazoans. Mitochondrial functions are frequently altered in cancer to promote both the energy and the necessary metabolic intermediates for biosynthesis required for tumor growth. Cancer stem cells (CSCs) contribute to chemotherapy resistance, relapse, and metastasis. Recent studies have shown that while non-stem, bulk cancer cells utilize glycolysis, breast CSCs are more dependent on oxidative phosphorylation (OxPhos) and therefore targeting mitochondria may inhibit CSC function. We previously reported that small molecule ONC201, which is an agonist for the mitochondrial caseinolytic protease (ClpP), induces mitochondrial dysfunction in breast cancer cells. In this study, we report that ClpP agonists inhibit breast cancer cell proliferation and CSC function in vitro and in vivo. Mechanistically, we found that OxPhos inhibition downregulates multiple pathways required for CSC function, such as the mevalonate pathway, YAP, Myc, and the HIF pathway. ClpP agonists showed significantly greater inhibitory effect on CSC functions compared with other mitochondria-targeting drugs. Further studies showed that ClpP agonists deplete NAD(P)+ and NAD(P)H, induce redox imbalance, dysregulate one-carbon metabolism and proline biosynthesis. Downregulation of these pathways by ClpP agonists further contribute to the inhibition of CSC function. In conclusion, ClpP agonists inhibit breast CSC functions by disrupting mitochondrial homeostasis in breast cancer cells and inhibiting multiple pathways critical to CSC function. Significance: ClpP agonists disrupt mitochondrial homeostasis by activating mitochondrial matrix protease ClpP. We report that ClpP agonists inhibit cell growth and cancer stem cell functions in breast cancer models by modulating multiple metabolic pathways essential to cancer stem cell function.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Peptídeo Hidrolases/metabolismo , NAD/metabolismo , Recidiva Local de Neoplasia/metabolismo , Mitocôndrias , Homeostase , Endopeptidases/metabolismo , Células-Tronco Neoplásicas , Endopeptidase Clp/metabolismo
14.
Sci Adv ; 8(43): eadd1168, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288299

RESUMO

Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease.

15.
Pharmacol Res Perspect ; 10(4): e00993, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35929764

RESUMO

We recently described the identification of a new class of small-molecule activators of the mitochondrial protease ClpP. These compounds synthesized by Madera Therapeutics showed increased potency of cancer growth inhibition over the related compound ONC201. In this study, we describe chemical optimization and characterization of the next generation of highly potent and selective small-molecule ClpP activators (TR compounds) and demonstrate their efficacy against breast cancer models in vitro and in vivo. We selected one compound (TR-107) with excellent potency, specificity, and drug-like properties for further evaluation. TR-107 showed ClpP-dependent growth inhibition in the low nanomolar range that was equipotent to paclitaxel in triple-negative breast cancer (TNBC) cell models. TR-107 also reduced specific mitochondrial proteins, including OXPHOS and TCA cycle components, in a time-, dose-, and ClpP-dependent manner. Seahorse XF analysis and glucose deprivation experiments confirmed the inactivation of OXPHOS and increased dependence on glycolysis following TR-107 exposure. The pharmacokinetic properties of TR-107 were compared with other known ClpP activators including ONC201 and ONC212. TR-107 displayed excellent exposure and serum t1/2 after oral administration. Using human TNBC MDA-MB-231 xenografts, the antitumor response to TR-107 was investigated. Oral administration of TR-107 resulted in a reduction in tumor volume and extension of survival in the treated compared with vehicle control mice. ClpP activation in vivo was validated by immunoblotting for TFAM and other mitochondrial proteins. In summary, we describe the identification of highly potent new ClpP agonists with improved efficacy against TNBC, through targeted inactivation of OXPHOS and disruption of mitochondrial metabolism.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
17.
Methods Mol Biol ; 2394: 267-298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094334

RESUMO

The Environmental Protection Agency's definition of "Green Chemistry" is "the design of chemical products and processes that reduces or eliminates the use or generation of hazardous substances. Green chemistry applies across the life cycle of a chemical product, including its design, manufacture, use, and ultimate disposal." Conventional omic tissue extraction procedures use solvents that are toxic and carcinogenic, such as chloroform and methyl-tert-butyl ether for lipidomics, or caustic chaotropic solutions for genomics and transcriptomics, such as guanidine or urea. A common preservation solution for pathology is formaldehyde, which is a carcinogen. Use of acetonitrile as a universal biospecimen preservation and extraction solvent will reduce these hazardous wastes, because it is less toxic and more environmentally friendly than the conventional solvents used in biorepository and biospecimen research. A new extraction method never applied to multi-omic, system biology research, called cold-induced phase separation (CIPS), uses freezing point temperatures to induce a phase separation of acetonitrile-water mixtures. Also, the CO2 exposure during CIPS will acidify the water precipitating DNA out of aqueous phase. The resulting phase separation brings hydrophobic lipids to the top acetonitrile fraction that is easily decanted from the bottom aqueous fraction, especially when the water is frozen. This CIPS acetonitrile extract contains the lipidome (lipids), the bottom aqueous fraction is sampled to obtain the transcriptome (RNA) fraction, and the remaining water and pellet is extracted with 60% acetonitrile to isolate the metabolome (<1 kD polar molecules). Finally, steps 4 and 5 use a TRIzol™ liquid-liquid extraction SOP of the pellet to isolate the genome (DNA) and proteome (proteins). This chapter details the multi-omic sequential extraction SOP and potential problems associated with each of the 5 steps, with steps 2, 4, and 5 still requiring validation. The metabolomic and lipidomic extraction efficiencies using the CIPS SOP is compared to conventional solvent extraction SOPs and is analyzed by nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS), respectively. Acetonitrile biospecimen preservation combined with the CIPS multi-omic extraction SOP is green chemistry technology that will eliminate the generation of the hazardous substances associated with biospecimen processing and permits separation and safe disposal of acetonitrile avoiding environmental contamination.


Assuntos
Lipidômica , Metabolômica , Cromatografia Líquida , Espectrometria de Massas , Solventes/química
18.
J Biol Chem ; 297(5): 101335, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688654

RESUMO

Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-ß1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mutação , Neoplasias Pancreáticas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
19.
Cell Rep ; 35(13): 109291, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34192548

RESUMO

To identify therapeutic targets for KRAS mutant pancreatic cancer, we conduct a druggable genome small interfering RNA (siRNA) screen and determine that suppression of BCAR1 sensitizes pancreatic cancer cells to ERK inhibition. Integrative analysis of genome-scale CRISPR-Cas9 screens also identify BCAR1 as a top synthetic lethal interactor with mutant KRAS. BCAR1 encodes the SRC substrate p130Cas. We determine that SRC-inhibitor-mediated suppression of p130Cas phosphorylation impairs MYC transcription through a DOCK1-RAC1-ß-catenin-dependent mechanism. Additionally, genetic suppression of TUBB3, encoding the ßIII-tubulin subunit of microtubules, or pharmacological inhibition of microtubule function decreases levels of MYC protein in a calpain-dependent manner and potently sensitizes pancreatic cancer cells to ERK inhibition. Accordingly, the combination of a dual SRC/tubulin inhibitor with an ERK inhibitor cooperates to reduce MYC protein and synergistically suppress the growth of KRAS mutant pancreatic cancer. Thus, we demonstrate that mechanistically diverse combinations with ERK inhibition suppress MYC to impair pancreatic cancer proliferation.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Microtúbulos/metabolismo , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetamidas/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Calpaína/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Humanos , Microtúbulos/efeitos dos fármacos , Morfolinas/farmacologia , Mutação/genética , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
20.
Sci Signal ; 13(648)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900880

RESUMO

The reciprocal regulation of phosphoprotein phosphatases (PPPs) by protein kinases is essential to cell cycle progression and control, particularly during mitosis for which the role of kinases has been extensively studied. PPPs perform much of the serine/threonine dephosphorylation in eukaryotic cells and achieve substrate selectivity and specificity through the interaction of distinct regulatory subunits with conserved catalytic subunits in holoenzyme complexes. Using a mass spectrometry-based chemical proteomics approach to enrich, identify, and quantify endogenous PPP holoenzyme complexes combined with kinase profiling, we investigated the phosphorylation-dependent regulation of PPP holoenzymes in mitotic cells. We found that cyclin-dependent kinase 1 (CDK1) phosphorylated a threonine residue on the catalytic subunit of the phosphatase PP2A, which disrupted its holoenzyme formation with the regulatory subunit B55. The consequent decrease in the dephosphorylation of PP2A-B55 substrates promoted mitotic entry. This direct phosphorylation by CDK1 was in addition to a previously reported indirect mechanism, thus adding a layer to the interaction between CDK1 and PP2A in regulating mitotic entry.


Assuntos
Proteína Quinase CDC2/metabolismo , Mitose , Proteína Fosfatase 2/metabolismo , Proteômica/métodos , Proteína Quinase CDC2/genética , Domínio Catalítico/genética , Cromatografia Líquida/métodos , Ciclina B/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopia Confocal/métodos , Mutação , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/genética , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA