Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1147576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994379

RESUMO

Introduction: Previous case-control studies of sudden unexpected death in epilepsy (SUDEP) patients failed to identify ECG features (peri-ictal heart rate, heart rate variability, corrected QT interval, postictal heart rate recovery, and cardiac rhythm) predictive of SUDEP risk. This implied a need to derive novel metrics to assess SUDEP risk from ECG. Methods: We applied Single Spectrum Analysis and Independent Component Analysis (SSA-ICA) to remove artifact from ECG recordings. Then cross-frequency phase-phase coupling (PPC) was applied to a 20-s mid-seizure window and a contour of -3 dB coupling strength was determined. The contour centroid polar coordinates, amplitude (alpha) and angle (theta), were calculated. Association of alpha and theta with SUDEP was assessed and a logistic classifier for alpha was constructed. Results: Alpha was higher in SUDEP patients, compared to non-SUDEP patients (p < 0.001). Theta showed no significant difference between patient populations. The receiver operating characteristic (ROC) of a logistic classifier for alpha resulted in an area under the ROC curve (AUC) of 94% and correctly classified two test SUDEP patients. Discussion: This study develops a novel metric alpha, which highlights non-linear interactions between two rhythms in the ECG, and is predictive of SUDEP risk.

2.
Front Netw Physiol ; 2: 866540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36926093

RESUMO

Sudden unexpected death in epilepsy (SUDEP) is the leading seizure-related cause of death in epilepsy patients. There are no validated biomarkers of SUDEP risk. Here, we explored peri-ictal differences in topological brain network properties from scalp EEG recordings of SUDEP victims. Functional connectivity networks were constructed and examined as directed graphs derived from undirected delta and high frequency oscillation (HFO) EEG coherence networks in eight SUDEP and 14 non-SUDEP epileptic patients. These networks were proxies for information flow at different spatiotemporal scales, where low frequency oscillations coordinate large-scale activity driving local HFOs. The clustering coefficient and global efficiency of the network were higher in the SUDEP group pre-ictally, ictally and post-ictally (p < 0.0001 to p < 0.001), with features characteristic of small-world networks. These results suggest that cross-frequency functional connectivity network topology may be a non-invasive biomarker of SUDEP risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA