Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(8): e2310051121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346198

RESUMO

Over the last 10,000 y, humans have manipulated fallow deer populations with varying outcomes. Persian fallow deer (Dama mesopotamica) are now endangered. European fallow deer (Dama dama) are globally widespread and are simultaneously considered wild, domestic, endangered, invasive and are even the national animal of Barbuda and Antigua. Despite their close association with people, there is no consensus regarding their natural ranges or the timing and circumstances of their human-mediated translocations and extirpations. Our mitochondrial analyses of modern and archaeological specimens revealed two distinct clades of European fallow deer present in Anatolia and the Balkans. Zooarchaeological evidence suggests these regions were their sole glacial refugia. By combining biomolecular analyses with archaeological and textual evidence, we chart the declining distribution of Persian fallow deer and demonstrate that humans repeatedly translocated European fallow deer, sourced from the most geographically distant populations. Deer taken to Neolithic Chios and Rhodes derived not from nearby Anatolia, but from the Balkans. Though fallow deer were translocated throughout the Mediterranean as part of their association with the Greco-Roman goddesses Artemis and Diana, deer taken to Roman Mallorca were not locally available Dama dama, but Dama mesopotamica. Romans also initially introduced fallow deer to Northern Europe but the species became extinct and was reintroduced in the medieval period, this time from Anatolia. European colonial powers then transported deer populations across the globe. The biocultural histories of fallow deer challenge preconceptions about the divisions between wild and domestic species and provide information that should underpin modern management strategies.


Assuntos
Cervos , Animais , Humanos , Península Balcânica
2.
Mol Phylogenet Evol ; 104: 73-82, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27475496

RESUMO

Here we consider the role of depth as a driver of evolution in a genus of deep-sea fishes. We provide a phylogeny for the genus Coryphaenoides (Gadiformes: Macrouridae) that represents the breadth of habitat use and distributions for these species. In our consensus phylogeny species found at abyssal depths (>4000m) form a well-supported lineage, which interestingly also includes two non-abyssal species, C. striaturus and C. murrayi, diverging from the basal node of that lineage. Biogeographic analyses suggest the genus may have originated in the Southern and Pacific Oceans where contemporary species diversity is highest. The abyssal lineage seems to have arisen secondarily and likely originated in the Southern/Pacific Oceans but diversification of this lineage occurred in the Northern Atlantic Ocean. All abyssal species are found in the North Atlantic with the exception of C. yaquinae in the North Pacific and C. filicauda in the Southern Ocean. Abyssal species tend to have broad depth ranges and wide distributions, indicating that the stability of the deep oceans and the ability to live across wide depths may promote population connectivity and facilitate large ranges. We also confirm that morphologically defined subgenera do not agree with our phylogeny and that the Giant grenadier (formerly Albatrossia pectoralis) belongs to Coryphaenoides, indicating that a taxonomic revision of the genus is needed. We discuss the implications of our findings for understanding the radiation and diversification of this genus, and the likely role of adaptation to the abyss.


Assuntos
Gadiformes/classificação , Adaptação Fisiológica , Animais , Oceano Atlântico , Citocromos c/classificação , Citocromos c/genética , Citocromos c/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Ecossistema , Gadiformes/genética , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Oceanos e Mares , Oceano Pacífico , Filogenia , Filogeografia , RNA Ribossômico/classificação , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
3.
Syst Biol ; 62(6): 865-77, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23929779

RESUMO

Understanding the evolution of diversity and the resulting systematics in marine systems is confounded by the lack of clear boundaries in oceanic habitats, especially for highly mobile species like marine mammals. Dolphin populations and sibling species often show differentiation between coastal and offshore habitats, similar to the pelagic/littoral or benthic differentiation seen for some species of fish. Here we test the hypothesis that lineages within the polytypic genus Tursiops track past changes in the environment reflecting ecological drivers of evolution facilitated by habitat release. We used a known recent time point for calibration (the opening of the Bosphorus) and whole mitochondrial genome (mitogenome) sequences for high phylogenetic resolution. The pattern of lineage formation suggested an origin in Australasia and several early divisions involving forms currently inhabiting coastal habitats. Radiation in pelagic environments was relatively recent, and was likely followed by a return to coastal habitat in some regions. The timing of some nodes defining different ecotypes within the genus clustered near the two most recent interglacial transitions. A signal for an increase in diversification was also seen for dates after the last glacial maximum. Together these data suggest the tracking of habitat preference during geographic expansions, followed by transition points reflecting habitat shifts, which were likely associated with periods of environmental change.


Assuntos
Organismos Aquáticos , Biodiversidade , Golfinhos/classificação , Golfinhos/genética , Ecossistema , Meio Ambiente , Filogenia , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA