Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Environ Sci Technol ; 58(2): 1064-1075, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38163761

RESUMO

Perfluoro-2-methoxyacetic acid (PFMOAA) is a short-chain perfluoroalkyl ether carboxylic acid that has been detected at high concentrations (∼10 µg/L) in drinking water in eastern North Carolina, USA, and in human serum and breastmilk in China. Despite documented human exposure there are almost no toxicity data available to inform risk assessment of PFMOAA. Here we exposed pregnant Sprague-Dawley rats to a range of PFMOAA doses (10-450 mg/kg/d) via oral gavage from gestation day (GD) 8 to postnatal day (PND) 2 and compared results to those we previously reported for perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). Newborn pups displayed reduced birthweight (≥30 mg/kg), depleted liver glycogen concentrations (all doses), hypoglycemia (≥125 mg/kg), and numerous significantly altered genes in the liver associated with fatty acid and glucose metabolism similar to gene changes produced by HFPO-DA. Pup survival was significantly reduced at ≥125 mg/kg, and at necropsy on PND2 both maternal and neonatal animals displayed increased liver weights, increased serum aspartate aminotransferase (AST), and reduced serum thyroid hormones at all doses (≥10 mg/kg). Pups also displayed highly elevated serum cholesterol at all doses. PFMOAA concentrations in serum and liver increased with maternal oral dose in both maternal and F1 animals and were similar to those we reported for PFOA but considerably higher than HFPO-DA. We calculated 10% effect levels (ED10 or EC10) and relative potency factors (RPF; PFOA = index chemical) among the three compounds based on maternal oral dose and maternal serum concentration (µM). Reduced pup liver glycogen, increased liver weights and reduced thyroid hormone levels (maternal and pup) were the most sensitive end points modeled. PFMOAA was ∼3-7-fold less potent than PFOA for most end points based on maternal serum RPFs, but slightly more potent for increased maternal and pup liver weights. PFMOAA is a maternal and developmental toxicant in the rat producing a constellation of adverse effects similar to PFOA and HFPO-DA.


Assuntos
Caprilatos , Fluorocarbonos , Glicogênio Hepático , Propionatos , Gravidez , Humanos , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Fluorocarbonos/toxicidade , Lactação , Hormônios Tireóideos , Exposição Materna
2.
Environ Toxicol Chem ; 43(1): 97-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753878

RESUMO

Biomonitoring data have consistently demonstrated that fish, wildlife, and humans are exposed to multiple per- and polyfluoroalkyl substances (PFAS) in drinking water and foods. Despite ubiquitous exposure to mixtures of PFAS, there is a lack of in vivo PFAS mixture research that addresses whether these chemicals act in a cumulative, dose-additive (DA) manner or whether they behave independently. For this reason, there is a critical need for mixtures studies designed to evaluate the cumulative toxicity and potential chemical interactions to support the assessment of human and ecological risks and also to define appropriate regulatory actions. Our primary objective was to evaluate the previously published Japanese quail chick mortality concentration-response data for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and the mixture of PFOS + PFOA and to use statistical modeling to determine whether the effects of the mixtures were accurately predicted by either DA or response addition modeling. In addition, we wanted to compare different DA models to determine whether one model produced more accurate predictions than the others. Our results support the hypothesis of cumulative effects on shared endpoints from PFOA and PFOS co-exposure and DA approaches for predictive estimates of cumulative effects. Given the limited number of in vivo studies that have been executed with enough individual PFAS and PFAS mixture concentration-response data to test the hypothesis of DA for PFAS mixtures, this re-analysis of the data is an important contribution to our understanding of how PFAS mixtures act. The analysis will provide support for regulatory agencies as they begin to implement PFAS cumulative hazard assessments in higher vertebrates. Environ Toxicol Chem 2024;43:97-104. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Humanos , Coturnix , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Fluorocarbonos/análise
3.
Sci Total Environ ; 892: 164609, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37271399

RESUMO

Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Ratos , Animais , Humanos , Masculino , Feminino , Adulto , Exposição Materna/efeitos adversos , Ratos Sprague-Dawley , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade
4.
Environ Int ; 170: 107631, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36402036

RESUMO

Globally, biomonitoring data demonstrate virtually all humans carry residues of multiple per- and polyfluoroalkyl substances (PFAS). Despite pervasive co-exposure, limited mixtures-based in vivo PFAS toxicity research has been conducted. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are commonly detected PFAS in human and environmental samples and both produce adverse effects in laboratory animal studies, including maternal and offspring effects when orally administered during pregnancy and lactation. To evaluate the effects of combined exposure to PFOA and PFOS, we orally exposed pregnant Sprague-Dawley rats from gestation day 8 (GD8) to postnatal day 2 (PND2) to PFOA (10-250 mg/kg/d) or PFOS (0.1-5 mg/kg/d) individually to characterize effects and dose response curve parameters, followed by a variable-ratio mixture experiment with a constant dose of PFOS (2 mg/kg/d) mixed with increasing doses of PFOA (3-80 mg/kg/d). The mixture study design was intended to: 1) shift the PFOA dose response curves for endpoints shared with PFOS, 2) allow comparison of dose addition (DA) and response addition (RA) model predictions, 3) conduct relative potency factor (RPF) analysis for multiple endpoints, and 4) avoid overt maternal toxicity. Maternal serum and liver concentrations of PFOA and PFOS were consistent between the individual chemical and mixture experiments. Combined exposure with PFOS significantly shifted the PFOA dose response curves towards effects at lower doses compared to PFOA-only exposure for multiple endpoints and these effects were well predicted by dose addition. For endpoints amenable to mixture model analyses, DA produced equivalent or better estimates of observed data than RA. All endpoints evaluated were accurately predicted by RPF and DA approaches except for maternal gestational weight gain, which produced less-than-additive results in the mixture. Data support the hypothesis of cumulative effects on shared endpoints from PFOA and PFOS co-exposure and dose additive approaches for predictive estimates of mixture effects.


Assuntos
Exposição Materna , Animais , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley , Exposição Materna/efeitos adversos
5.
Toxicol Appl Pharmacol ; 449: 116136, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752307

RESUMO

Data demonstrate numerous per- and polyfluoroalkyl substances (PFAS) activate peroxisome proliferator-activated receptor alpha (PPARα), however, additional work is needed to characterize PFAS activity on PPAR gamma (PPARγ) and other nuclear receptors. We utilized in vitro assays with either human or rat PPARα or PPARγ ligand binding domains to evaluate 16 PFAS (HFPO-DA, HFPO-DA-AS, NBP2, PFMOAA, PFHxA, PFOA, PFNA, PFDA, PFOS, PFBS, PFHxS, PFOSA, EtPFOSA, and 4:2, 6:2 and 8:2 FTOH), 3 endogenous fatty acids (oleic, linoleic, and octanoic), and 3 pharmaceuticals (WY14643, clofibrate, and the metabolite clofibric acid). We also tested chemicals for human estrogen receptor (hER) transcriptional activation. Nearly all compounds activated both PPARα and PPARγ in both human and rat ligand binding domain assays, except for the FTOH compounds and PFOSA. Receptor activation and relative potencies were evaluated based on effect concentration 20% (EC20), top percent of max fold induction (pmaxtop), and area under the curve (AUC). HFPO-DA and HFPO-DA-AS were the most potent (lowest EC20, highest pmaxtop and AUC) of all PFAS in rat and human PPARα assays, being slightly less potent than oleic and linoleic acid, while NBP2 was the most potent in rat and human PPARγ assays. Only PFHxS, 8:2 and 6:2 FTOH exhibited hER agonism >20% pmax. In vitro measures of human and rat PPARα and PPARγ activity did not correlate with oral doses or serum concentrations of PFAS that induced increases in male rat liver weight from the National Toxicology Program 28-d toxicity studies. Data indicate that both PPARα and PPARγ activation may be molecular initiating events that contribute to the in vivo effects observed for many PFAS.


Assuntos
Fluorocarbonos , PPAR alfa , Animais , Ácidos Graxos , Feminino , Fluorocarbonos/toxicidade , Ligantes , Masculino , PPAR alfa/genética , PPAR gama , Ratos , Receptores de Estrogênio
6.
Environ Int ; 160: 107056, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952357

RESUMO

Nafion byproduct 2 (NBP2) is a polyfluoroalkyl ether sulfonic acid that was recently detected in surface water, drinking water, and human serum samples from monitoring studies in North Carolina, USA. We orally exposed pregnant Sprague-Dawley rats to NBP2 from gestation day (GD) 14-18 (0.1-30 mg/kg/d), GD17-21, and GD8 to postnatal day (PND) 2 (0.3-30 mg/kg/d) to characterize maternal, fetal, and postnatal effects. GD14-18 exposures were also conducted with perfluorooctane sulfonate (PFOS) for comparison to NBP2, as well as data previously published for hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). NBP2 produced stillbirth (30 mg/kg), reduced pup survival shortly after birth (10 mg/kg), and reduced pup body weight (10 mg/kg). Histopathological evaluation identified reduced glycogen stores in newborn pup livers and hepatocyte hypertrophy in maternal livers at ≥ 10 mg/kg. Exposure to NBP2 from GD14-18 reduced maternal serum total T3 and cholesterol concentrations (30 mg/kg). Maternal, fetal, and neonatal liver gene expression was investigated using RT-qPCR pathway arrays, while maternal and fetal livers were also analyzed using TempO-Seq transcriptomic profiling. Overall, there was limited alteration of genes in maternal or F1 livers from NBP2 exposure with significant changes mostly occurring in the top dose group (30 mg/kg) associated with lipid and carbohydrate metabolism. Metabolomic profiling indicated elevated maternal bile acids for NBP2, but not HFPO-DA or PFOS, while all three reduced 3-indolepropionic acid. Maternal and fetal serum and liver NBP2 concentrations were similar to PFOS, but ∼10-30-fold greater than HFPO-DA concentrations at a given maternal oral dose. NBP2 is a developmental toxicant in the rat, producing neonatal mortality, reduced pup body weight, reduced pup liver glycogen, reduced maternal thyroid hormones, and altered maternal and offspring lipid and carbohydrate metabolism similar to other studied PFAS, with oral toxicity for pup loss that is slightly less potent than PFOS but more potent than HFPO-DA.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Animais , Feminino , Polímeros de Fluorcarboneto , Fluorocarbonos/toxicidade , Óxidos , Gravidez , Ratos , Ratos Sprague-Dawley
7.
Sci Total Environ ; 788: 147721, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134358

RESUMO

A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Monitoramento Ambiental , Humanos , Porto Rico , Água , Poluentes Químicos da Água/análise
8.
Environ Int ; 156: 106615, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34000504

RESUMO

Humans carry residues of multiple synthetic chemicals at any given point in time. Research has demonstrated that compounds with varying molecular initiating events (MIE) that disrupt common key events can act in concert to produce cumulative adverse effects. Congenital defects of the male reproductive tract are some of the most frequently diagnosed malformations in humans and chemical exposures in utero can produce these effects in laboratory animals and humans. Here, we hypothesized that in utero exposure to a mixture of pesticides and phthalates, each of which produce male reproductive tract defects individually, would produce cumulative effects even when each chemical is present at a no observed adverse effect level (NOAEL) specific for male reproductive effects. Pregnant Sprague-Dawley rats were exposed via oral gavage to a fixed-ratio dilution mixture of 5 pesticides (vinclozolin, linuron, procymidone, prochloraz, pyrifluquinazon), 1 pesticide metabolite (dichlorodiphenyldichloroethylene (DDE)), and 9 phthalates (dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl) during the critical window of rat fetal masculinization (gestation day 14-18). The top dose (100% dose) contained each compound at a concentration 2-fold greater than the individual chemical NOAEL followed by a dilution series that represented each chemical at NOAEL, NOAEL/2, NOAEL/4, NOAEL/8, NOAEL/15, NOAEL/100, NOAEL/1000. Reduced fetal testis gene expression occurred at NOAEL/15, reduced fetal testis testosterone production occurred at NOAEL/8, reduced anogenital distance, increased nipple retention, and delayed puberty occurred at NOAEL/4, and severe effects including genital malformations and weight reductions in numerous reproductive tissues occurred at NOAEL/2. This study demonstrates that these phthalates and pesticides acted cumulatively to produce adverse effects at doses below which any individual chemical had been shown to produce an effect alone and even though they have different MIEs.


Assuntos
Praguicidas , Animais , Feminino , Genitália Masculina , Masculino , Nível de Efeito Adverso não Observado , Praguicidas/toxicidade , Gravidez , Ratos , Ratos Sprague-Dawley , Reprodução , Testículo
9.
Sci Total Environ ; 768: 144750, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736315

RESUMO

Recent urban public water supply contamination events emphasize the importance of screening treated drinking water quality after distribution. In vitro bioassays, when run concurrently with analytical chemistry methods, are effective tools to evaluating the efficacy of water treatment processes and water quality. We tested 49 water samples representing the Chicago Department of Water Management service areas for estrogen, (anti)androgen, glucocorticoid receptor-activating contaminants and cytotoxicity. We present a tiered screening approach suitable to samples with anticipated low-level activity and initially tested all extracts for statistically identifiable endocrine activity; performing a secondary dilution-response analysis to determine sample EC50 and biological equivalency values (BioEq). Estrogenic activity was detected in untreated Lake Michigan intake water samples using mammalian (5/49; median: 0.21 ng E2Eq/L) and yeast cell (5/49; 1.78 ng E2Eq/L) bioassays. A highly sensitive (anti)androgenic activity bioassay was applied for the first time to water quality screening and androgenic activity was detected in untreated intake and treated pre-distribution samples (4/49; 0.93 ng DHTEq/L). No activity was identified above method detection limits in the yeast androgenic, mammalian anti-androgenic, and both glucocorticoid bioassays. Known estrogen receptor agonists were detected using HPLC/MS-MS (estrone: 0.72-1.4 ng/L; 17α-estradiol: 1.3-1.5 ng/L; 17ß-estradiol: 1.4 ng/L; equol: 8.8 ng/L), however occurrence did not correlate with estrogenic bioassay results. Many studies have applied bioassays to water quality monitoring using only relatively small samples sets often collected from surface and/or wastewater effluent. However, to realistically adapt these tools to treated water quality monitoring, water quality managers must have the capacity to screen potentially hundreds of samples in short timeframes. Therefore, we provided a tiered screening model that increased sample screening speed, without sacrificing statistical stringency, and detected estrogenic and androgenic activity only in pre-distribution Chicago area samples.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Bioensaio , Chicago , Disruptores Endócrinos/análise , Monitoramento Ambiental , Estrogênios/análise , Michigan , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água
10.
Environ Int ; 146: 106204, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126064

RESUMO

Hexafluoropropylene oxide dimer acid (HFPO-DA or GenX) is an industrial replacement for the straight-chain perfluoroalkyl substance (PFAS), perfluorooctanoic acid (PFOA). Previously we reported maternal, fetal, and postnatal effects from gestation day (GD) 14-18 oral dosing in Sprague-Dawley rats. Here, we further evaluated the perinatal toxicity of HFPO-DA by orally dosing rat dams with 1-125 mg/kg/d (n = 4 litters per dose) from GD16-20 and with 10-250 mg/kg/d (n = 5) from GD8 - postnatal day (PND) 2. Effects of GD16-20 dosing were similar to those previously reported for GD14-18 dosing and included increased maternal liver weight, altered maternal serum lipid and thyroid hormone concentrations, and altered expression of peroxisome proliferator-activated receptor (PPAR) pathway genes in maternal and fetal livers. Dosing from GD8-PND2 produced similar effects as well as dose-responsive decreased pup birth weight (≥30 mg/kg), increased neonatal mortality (≥62.5 mg/kg), and increased pup liver weight (≥10 mg/kg). Histopathological evaluation of newborn pup livers indicated a marked reduction in glycogen stores and pups were hypoglycemic at birth. Quantitative gene expression analyses of F1 livers revealed significant alterations in genes related to glucose metabolism at birth and on GD20. Maternal serum and liver HFPO-DA concentrations were similar between dosing intervals, indicating rapid clearance, however dams dosed GD8 - PND2 had greater liver weight and gestational weight gain effects at lower doses than GD16-20 dosing, indicating the importance of exposure duration. Comparison of neonatal mortality dose-response curves between HFPO-DA and previously published perfluorooctane sulfonate (PFOS) data indicated that, based on serum concentration, the potency of these two PFAS are similar in the rat. Overall, HFPO-DA is a developmental toxicant in the rat and the spectrum of adverse effects is consistent with prior PFAS toxicity evaluations, such as PFOS and PFOA.


Assuntos
Fluorocarbonos , Óxidos , Animais , Peso ao Nascer , Feminino , Fluorocarbonos/toxicidade , Glucose , Hepatomegalia , Mortalidade Infantil , Metabolismo dos Lipídeos , Gravidez , Ratos , Ratos Sprague-Dawley
11.
Sci Total Environ ; 699: 134297, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31683213

RESUMO

Although endocrine disrupting compounds have been detected in wastewater and surface waters worldwide using a variety of in vitro effects-based screening tools, e.g. bioassays, few have examined potential attenuation of environmental contaminants by both natural (sorption, degradation, etc.) and anthropogenic (water treatment practices) processes. This study used several bioassays and quantitative chemical analyses to assess residence-time weighted samples at six sites along a river in the northeastern United States beginning upstream from a wastewater treatment plant outfall and proceeding downstream along the stream reach to a drinking water treatment plant. Known steroidal estrogens were quantified and changes in signaling pathway molecular initiating events (activation of estrogen, androgen, glucocorticoid, peroxisome proliferator-activated, pregnane X receptor, and aryl hydrocarbon receptor signaling networks) were identified in water extracts. In initial multi-endpoint assays geographic and receptor-specific endocrine activity patterns in transcription factor signatures and nuclear receptor activation were discovered. In subsequent single endpoint receptor-specific bioassays, estrogen (16 of 18 samples; 0.01 to 28 ng estradiol equivalents [E2Eqs]/L) glucocorticoid (3 of 18 samples; 1.8 to 21 ng dexamethasone equivalents [DexEqs]/L), and androgen (2 of 18 samples; 0.95 to 2.1 ng dihydrotestosterone equivalents [DHTEqs]/L) receptor transcriptional activation occurred above respective assay method detection limits (0.04 ng E2Eqs/L, 1.2 ng DexEqs/L, and 0.77 ng DHTEqs/L) in multiple sampling events. Estrogen activity, the most often detected, correlated well with measured concentrations of known steroidal estrogens (r2 = 0.890). Overall, activity indicative of multiple types of endocrine active compounds was highest in wastewater effluent samples, while activity downstream was progressively lower, and negligible in unfinished treated drinking water. Not only was estrogenic and glucocorticoid activity confirmed in the effluent by utilizing multiple methods concurrently, but other activated signaling networks that historically received less attention (i.e. peroxisome proliferator-activated receptor) were also detected.


Assuntos
Bioensaio , Disruptores Endócrinos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Androgênios , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Estradiol , Estrogênios , Estrona , New England , Receptores de Hidrocarboneto Arílico , Rios , Águas Residuárias/química , Purificação da Água
13.
Environ Health Perspect ; 127(3): 37008, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30920876

RESUMO

BACKGROUND: Hexafluoropropylene oxide dimer acid [(HFPO-DA), GenX] is a member of the per- and polyfluoroalkyl substances (PFAS) chemical class, and elevated levels of HFPO-DA have been detected in surface water, air, and treated drinking water in the United States and Europe. OBJECTIVES: We aimed to characterize the potential maternal and postnatal toxicities of oral HFPO-DA in rats during sexual differentiation. Given that some PFAS activate peroxisome proliferator-activated receptors (PPARs), we sought to assess whether HFPO-DA affects androgen-dependent development or interferes with estrogen, androgen, or glucocorticoid receptor activity. METHODS: Steroid receptor activity was assessed with a suite of in vitro transactivation assays, and Sprague-Dawley rats were used to assess maternal, fetal, and postnatal effects of HFPO-DA exposure. Dams were dosed daily via oral gavage during male reproductive development (gestation days 14-18). We evaluated fetal testes, maternal and fetal livers, maternal serum clinical chemistry, and reproductive development of F1 animals. RESULTS: HFPO-DA exposure resulted in negligible in vitro receptor activity and did not impact testosterone production or expression of genes key to male reproductive development in the fetal testis; however, in vivo exposure during gestation resulted in higher maternal liver weights ([Formula: see text]), lower maternal serum thyroid hormone and lipid profiles ([Formula: see text]), and up-regulated gene expression related to PPAR signaling pathways in maternal and fetal livers ([Formula: see text]). Further, the pilot postnatal study indicated lower female body weight and lower weights of male reproductive tissues in F1 animals. CONCLUSIONS: HFPO-DA exposure produced multiple effects that were similar to prior toxicity evaluations on PFAS, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but seen as the result of higher oral doses. The mean dam serum concentration from the lowest dose group was 4-fold greater than the maximum serum concentration detected in a worker in an HFPO-DA manufacturing facility. Research is needed to examine the mechanisms and downstream events linked to the adverse effects of PFAS as are mixture-based studies evaluating multiple PFAS. https://doi.org/10.1289/EHP4372.


Assuntos
Fluorocarbonos/efeitos adversos , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Diferenciação Sexual/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Feminino , Feto/efeitos dos fármacos , Feto/patologia , Feto/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley
14.
Toxicol Sci ; 168(1): 252-263, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535411

RESUMO

Many glucocorticoid receptor (GR) agonists have been detected in waste and surface waters domestically and around the world, but the way a mixture of these environmental compounds may elicit a total glucocorticoid activity response in water samples remains unknown. Therefore, we characterized 19 GR ligands using a CV1 cell line transcriptional activation assay applicable to water quality monitoring. Cells were treated with individual GR ligands, a fixed ratio mixture of full or partial agonists, or a nonequipotent mixture with full and partial agonists. Efficacy varied (48.09%-102.5%) and potency ranged over several orders of magnitude (1.278 × 10-10 to 3.93 × 10-8 M). Concentration addition (CA) and response addition (RA) mixtures models accurately predicted equipotent mixture responses of full agonists (r2 = 0.992 and 0.987, respectively). However, CA and RA models assume mixture compounds produce full agonist-like responses, and therefore they overestimated observed maximal efficacies for mixtures containing partial agonists. The generalized concentration addition (GCA) model mathematically permits < 100% maximal responses, and fell within the 95% confidence interval bands of mixture responses containing partial agonists. The GCA, but not CA and RA, model predictions of nonequipotent mixtures containing both full and partial agonists fell within the same statistical distribution as the observed values, reinforcing the practicality of the GCA model as the best overall model for predicting GR activation. Elucidating the mechanistic basis of GR activation by mixtures of previously detected environmental GR ligands will benefit the interpretation of environmental sample contents in future water quality monitoring studies.


Assuntos
Bioensaio/métodos , Glucocorticoides/metabolismo , Modelos Biológicos , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Corticosterona/farmacologia , Desoxicorticosterona/farmacologia , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Ligantes , Prednisolona/farmacologia , Ativação Transcricional
15.
Toxicol Lett ; 290: 55-61, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29571896

RESUMO

In utero exposure to certain phthalate esters results in testicular toxicity, characterized at the tissue level by induction of multinucleated germ cells (MNGs) in rat, mouse, and human fetal testis. Phthalate exposures also result in a decrease in testicular testosterone in rats. The anti-androgenic effects of phthalates have been more thoroughly quantified than testicular pathology due to the significant time requirement associated with manual counting of MNGs on histological sections. An automated counting method was developed in ImageJ to quantify MNGs in digital images of hematoxylin-stained rat fetal testis tissue sections. Timed pregnant Sprague Dawley rats were exposed by daily oral gavage from gestation day 17 to 21 with one of eight phthalate test compounds or corn oil vehicle. Both the manual counting method and the automated image analysis method identified di-n-butyl phthalate, butyl benzyl phthalate, dipentyl phthalate, and di-(2-ethylhexyl) phthalate as positive for induction of MNGs. Dimethyl phthalate, diethyl phthalate, the brominated phthalate di-(2-ethylhexyl) tetrabromophthalate, and dioctyl terephthalate were negative. The correlation between automated and manual scoring metrics was high (r = 0.923). Results of MNG analysis were consistent with these compounds' anti-androgenic activities, which were confirmed in an ex vivo testosterone production assay. In conclusion, we have developed a reliable image analysis method that can be used to facilitate dose-response studies for the reproducible induction of MNGs by in utero phthalate exposure.


Assuntos
Feto/efeitos dos fármacos , Células Germinativas/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Testículo/efeitos dos fármacos , Animais , Dibutilftalato/toxicidade , Relação Dose-Resposta a Droga , Células Germinativas/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Testículo/patologia , Testosterona/biossíntese
16.
Integr Environ Assess Manag ; 13(2): 267-279, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28127947

RESUMO

A SETAC Pellston Workshop® "Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS-not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17ß-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and sufficiently reliable and protective of the environment. In the absence of such data, assessment on the basis of hazard is scientifically justified until such time as relevant new information is available. Integr Environ Assess Manag 2017;13:267-279. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Disruptores Endócrinos/análise , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/análise , Conferências de Consenso como Assunto , Ecotoxicologia , Disruptores Endócrinos/normas , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/normas , Poluentes Ambientais/toxicidade , Medição de Risco
17.
Integr Environ Assess Manag ; 13(2): 293-301, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27862884

RESUMO

Endocrine-disrupting substances (EDS) may have certain biological effects including delayed effects, multigenerational effects, and may display nonmonotonic dose-response (NMDR) relationships that require careful consideration when determining environmental hazards. Endocrine disrupting substances can have specific and profound effects when exposure occurs during sensitive windows of the life cycle (development, reproduction). This creates the potential for delayed effects that manifest when exposure has ceased, possibly in a different life stage. This potential underscores the need for testing in appropriate (sensitive) life stages and full life cycle designs. Such tests are available in the Organisation for Economic Co-operation and Development (OECD) tool box and should be used to derive endpoints that can be considered protective of all life stages. Similarly, the potential for effects to be manifest in subsequent generations (multigenerational effects) has also been raised as a potential issue in the derivation of appropriate endpoints for EDS. However, multigenerational studies showing increasing sensitivity of successive generations are uncommon. Indeed this is reflected in the design of new higher tier tests to assess endocrine active substances (EAS) that move to extended one-generation designs and away from multi-generational studies. The occurrence of NMDRs is also considered a limiting factor for reliable risk assessment of EDS. Evidence to date indicates NMDRs are more prevalent in in vitro and mechanistic data, not often translating to adverse apical endpoints that would be used in risk assessment. A series of steps to evaluate NMDRs in the context of endocrine hazard and risk assessment procedures is presented. If careful consideration of delayed, multigenerational effects and NMDRs is made, it is feasible to assess environmental endocrine hazards and derive robust apical endpoints for risk assessment procedures ensuring a high level of environmental protection. Integr Environ Assess Manag 2017;13:293-301. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Disruptores Endócrinos , Monitoramento Ambiental/métodos , Poluentes Ambientais , Ecotoxicologia , Medição de Risco/métodos
18.
Int J Hyg Environ Health ; 220(2 Pt A): 179-188, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27923611

RESUMO

Toxicological studies of defined chemical mixtures assist human health risk assessment by establishing how chemicals interact with one another to induce an effect. This paper reviews how antiandrogenic chemical mixtures can alter reproductive tract development in rats with a focus on the reproductive toxicant phthalates. The reviewed studies compare observed mixture data to mathematical mixture model predictions based on dose addition or response addition to determine how the individual chemicals in a mixture interact (e.g., additive, greater, or less than additive). Phthalate mixtures were observed to act in a dose additive manner based on the relative potency of the individual phthalates to suppress fetal testosterone production. Similar dose additive effects have been reported for mixtures of phthalates with antiandrogenic pesticides of differing mechanisms of action. Overall, data from these phthalate experiments in rats can be used in conjunction with human biomonitoring data to determine individual hazard indices, and recent cumulative risk assessments in humans indicate an excess risk to antiandrogenic chemical mixtures that include phthalates only or phthalates in combination with other antiandrogenic chemicals.


Assuntos
Antagonistas de Androgênios/toxicidade , Animais , Interações Medicamentosas , Humanos , Modelos Biológicos , Medição de Risco
19.
Toxicol Sci ; 153(2): 382-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27473340

RESUMO

In vitro estrogen receptor assays are valuable tools for identifying environmental samples and chemicals that display estrogenic activity. However, in vitro potency cannot necessarily be extrapolated to estimates of in vivo potency because in vitro assays are currently unable to fully account for absorption, distribution, metabolism, and excretion. To explore this issue, we calculated relative potency factors (RPF), using 17α-ethinyl estradiol (EE2) as the reference compound, for several chemicals and mixtures in the T47D-KBluc estrogen receptor transactivation assay. In vitro RPFs were used to predict rat oral uterotrophic assay responses for these chemicals and mixtures. EE2, 17ß-estradiol (E2), benzyl-butyl phthalate (BBP), bisphenol-A (BPA), bisphenol-AF (BPAF), bisphenol-C (BPC), bisphenol-S (BPS), and methoxychlor (MET) were tested individually, while BPS + MET, BPAF + MET, and BPAF + BPC + BPS + EE2 + MET were tested as equipotent mixtures. In vivo ED50 values for BPA, BPAF, and BPC were accurately predicted using in vitro data; however, E2 was less potent than predicted, BBP was a false positive, and BPS and MET were 76.6 and 368.3-fold more active in vivo than predicted from the in vitro potency, respectively. Further, mixture ED50 values were more accurately predicted by the dose addition model using individual chemical in vivo uterotrophic data (0.7-1.5-fold difference from observed) than in vitro data (1.4-86.8-fold). Overall, these data illustrate the potential for both underestimating and overestimating in vivo potency from predictions made with in vitro data for compounds that undergo substantial disposition following oral administration. Accounting for aspects of toxicokinetics, notably metabolism, in in vitro models will be necessary for accurate in vitro-to-in vivo extrapolations.


Assuntos
Estrogênios/farmacologia , Receptores de Estrogênio/genética , Ativação Transcricional/efeitos dos fármacos , Incerteza , Animais , Relação Dose-Resposta a Droga , Estrogênios/farmacocinética , Estrogênios/toxicidade , Feminino , Ratos , Ratos Sprague-Dawley , Útero/efeitos dos fármacos
20.
Environ Toxicol Chem ; 35(11): 2806-2816, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27074246

RESUMO

The US Environmental Protection Agency has responsibility for assessing endocrine activity of more than 10 000 chemicals, a task that cannot reasonably be achieved solely through use of available mammalian and nonmammalian in vivo screening assays. Hence, it has been proposed that chemicals be prioritized for in vivo testing using data from in vitro high-throughput assays for specific endocrine system targets. Recent efforts focused on potential estrogenic chemicals-specifically those that activate estrogen receptor-alpha (ERα)-have broadly demonstrated feasibility of the approach. However, a major uncertainty is whether prioritization based on mammalian (primarily human) high-throughput assays accurately reflects potential chemical-ERα interactions in nonmammalian species. The authors conducted a comprehensive analysis of cross-species comparability of chemical-ERα interactions based on information concerning structural attributes of estrogen receptors, in vitro binding and transactivation data for ERα, and the effects of a range of chemicals on estrogen-signaling pathways in vivo. Overall, this integrated analysis suggests that chemicals with moderate to high estrogenic potency in mammalian systems also should be priority chemicals in nonmammalian vertebrates. However, the degree to which the prioritization approach might be applicable to invertebrates is uncertain because of a lack of knowledge of the biological role(s) of possible ERα orthologs found in phyla such as annelids. Further, comparative analysis of in vitro data for fish and reptiles suggests that mammalian-based assays may not effectively capture ERα interactions for low-affinity chemicals in all vertebrate classes. Environ Toxicol Chem 2016;35:2806-2816. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.


Assuntos
Disruptores Endócrinos/toxicidade , Sistema Endócrino/efeitos dos fármacos , Monitoramento Ambiental/métodos , Receptor alfa de Estrogênio/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Anfíbios/metabolismo , Animais , Aves/metabolismo , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Sistema Endócrino/metabolismo , Receptor alfa de Estrogênio/química , Peixes/metabolismo , Humanos , Ligação Proteica , Reprodução/efeitos dos fármacos , Transdução de Sinais , Especificidade da Espécie , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA