Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Aging ; 5: 1374905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055970

RESUMO

Introduction: Centella asiatica (CA) is known in Ayurvedic medicine as a rejuvenating herb with particular benefits in the nervous system. Two groups of specialized metabolites found in CA and purported to contribute to its beneficial effects are triterpenes (TTs) and caffeoylquinic acids (CQAs). In order to evaluate the role and interactions of TTs and CQAs in the effects of CA, we examined the neurotrophic effects of a water extract of CA (CAW) and combinations of its TT and CQA components in mouse primary hippocampal neurons in vitro and in Drosophila melanogaster flies in vivo. Methods: Primary hippocampal neurons were isolated from mouse embryos and exposed in vitro for 5 days to CAW (50 µg/mL), mixtures of TTs, CQAs or TT + CQA components or to 4 TTs or 8 individual CQA compounds of CAW. Dendritic arborization was evaluated using Sholl analysis. Drosophila flies were aged to 28 days and treated for 2 weeks with CAW (10 mg/mL) in the food, mixtures of TTs, CQAs or TT + CQA and individual TT and CQA compounds. TTs and CQAs were tested at concentrations matching their levels in the CAW treatment used. After 2 weeks of treatment, Drosophila aged 42 days were evaluated for phototaxis responses. Results: In mouse primary hippocampal neurons, CAW (50 µg/mL), the TT mix, CQA mix, all individual TTs and most CQAs significantly increased dendritic arborization to greater than control levels. However, the TT + CQA combination significantly decreased dendritic arborization. In Drosophila, a marked age-related decline in fast phototaxis response was observed in both males and females over a 60 days period. However, resilience to this decline was afforded in both male and female flies by treatment from 28 days onwards with CAW (10 mg/mL), or equivalent concentrations of mixed TTs, mixed CQAs and a TT + CQA mix. Of all the individual compounds, only 1,5-diCQA slowed age-related decline in phototaxis in male and female flies. Discussion: This study confirmed the ability of CAW to increase mouse neuronal dendritic arborization, and to provide resilience to age-related neurological decline in Drosophila. The TT and CQA components both contribute to these effects but do not have a synergistic effect. While individual TTs and most individual CQAs increased dendritic arborization at CAW equivalent concentrations, in the Drosophila model, only 1,5-diCQA was able to slow down the age-related decline in phototaxis. This suggests that combinations (or potentially higher concentrations) of the other compounds are needed to provide resilience in this model.

2.
Front Aging ; 5: 1357922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770167

RESUMO

Background: A water extract (CAW) of the Ayurvedic plant Centella asiatica administered in drinking water has been shown to improve cognitive deficits in mouse models of aging and neurodegenerative diseases. Here the effects of CAW administered in drinking water or the diet on cognition, measures of anxiety and depression-like behavior in healthy aged mice are compared. Methods: Three- and eighteen-month-old male and female C57BL6 mice were administered rodent AIN-93M diet containing CAW (0, 0.2, 0.5 or 1% w/w) to provide 0, 200 mg/kg/d, 500 mg/kg/d or 1,000 mg/kg/d CAW for a total of 5 weeks. An additional group of eighteen-month-old mice were treated with CAW (10 mg/mL) in their drinking water CAW for a total of 5 weeks to deliver the same exposure of CAW as the highest dietary dose (1,000 mg/kg/d). CAW doses delivered were calculated based on food and water consumption measured in previous experiments. In the fourth and fifth weeks, mice underwent behavioral testing of cognition, anxiety and depression (n = 12 of each sex per treatment group in each test). Results: Aged mice of both sexes showed cognitive deficits relative to young mice while only female aged mice showed increased anxiety compared to the young female mice and no differences in depression were observed between the different ages. CAW (1,000 mg/kg/d) in the drinking water improved deficits in aged mice in learning, executive function and recognition memory in both sexes and attenuated the increased measures of anxiety observed in the aged female mice. However, CAW in the diet only improved executive function in aged mice at the highest dose (1,000 mg/kg/d) in both sexes and did so less robustly than when given in the water. There were no effects of CAW on depression-like behavior in aged animals regardless of whether it was administered in the diet or the water. Conclusions: These results suggest that CAW can ameliorate age-related changes in measures of anxiety and cognition and that the mode of administration is important for the effects of CAW on resilience to these age-related changes.

4.
Front Neurosci ; 18: 1277626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591068

RESUMO

Introduction: A water extract of Centella asiatica (L.) Urban [Apiaceae] (CAW) has demonstrated cognitive-enhancing effects in mouse models of Alzheimer's disease and aging, the magnitude of which is influenced by whether CAW is delivered in the drinking water or the diet. These cognitive benefits are accompanied by improvements in oxidative stress and mitochondrial function in the brain, two pathways related to the neuroinflammatory response. The effect of CAW on neuroinflammation, however, has not been directly studied. Here, we investigated the effect of CAW on neuroinflammation in 5xFAD mice and compared plasma levels of CAW's active compounds following two modes of CAW administration. Methods: Eight-to-nine-month-old male and female 5xFAD mice and their wild-type littermates were administered CAW in their diet or drinking water (0 or 1,000 mg/kg/day) for five weeks. Immunohistochemistry was performed for ß-amyloid (Aß), glial fibrillary acidic protein (GFAP), and Griffonia simplicifolia lectin I (GSL I) in the cortex and hippocampus. Gene expression of inflammatory mediators (IL-6, TNFα, IL-1ß, TREM2, AIF1, CX3CR1, CX3CL1, CD36, C3AR1, RAGE, CCR6, CD3E) was measured in the deep grey matter. Results: CAW decreased cortical Aß plaque burden in female 5xFAD mice administered CAW in the drinking water but had no effect on Aß plaques in other treatment groups. CAW did not impact elevated levels of GFAP or GSL I in 5xFAD mice, regardless of sex, brain region, or mode of CAW administration. In the deep grey matter, CAW increased C3AR1 expression in 5xFAD females administered CAW in the drinking water and decreased IL-1ß expression in 5xFAD males administered CAW in the diet. CAW had no effect, however, on gene expression levels of any other inflammatory mediator in the deep grey, for either sex or mode of CAW administration. Mice administered CAW in the drinking water versus the diet had significantly higher plasma levels of CAW compounds. Discussion: CAW had little impact on the neuroinflammatory markers selected for evaluation in the present study, suggesting that the cognitive benefits of CAW may not be mediated by an anti-inflammatory effect or that additional molecular markers are needed to fully characterize the effect of CAW on neuroinflammation.

5.
Biomed Pharmacother ; 173: 116370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458012

RESUMO

Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6J mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced pSyn levels in both the cortex and hippocampus and attenuated the reduction in TH expression in the striatum seen in A53Tsyn mice. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models.


Assuntos
Flavonas , Doença de Parkinson , Tirosina 3-Mono-Oxigenase , Camundongos , Animais , Tirosina 3-Mono-Oxigenase/metabolismo , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Cognição , Modelos Animais de Doenças
6.
Molecules ; 29(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398590

RESUMO

Rapid screening of botanical extracts for the discovery of bioactive natural products was performed using a fractionation approach in conjunction with flow-injection high-resolution mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation of the relative abundance of molecular features (representing individual phytochemicals) with the read-outs of bioassays. We applied this strategy for discovering and identifying constituents of Centella asiatica (C. asiatica) that protect against Aß cytotoxicity in vitro. C. asiatica has been associated with improving mental health and cognitive function, with potential use in Alzheimer's disease. Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica to evaluate the protective benefit derived from these subfractions against amyloid ß-cytotoxicity. The % viability score of the cells exposed to each subfraction was used in conjunction with the intensity of the molecular features in two computational models, namely Elastic Net and selectivity ratio, to determine the relationship of the peak intensity of molecular features with % viability. Finally, the correlation of mass spectral features with MC65 protection and their abundance in different sub-fractions were visualized using GNPS molecular networking. Both computational methods unequivocally identified dicaffeoylquinic acids as providing strong protection against Aß-toxicity in MC65 cells, in agreement with the protective effects observed for these compounds in previous preclinical model studies.


Assuntos
Doença de Alzheimer , Centella , Ácido Quínico/análogos & derivados , Triterpenos , Humanos , Peptídeos beta-Amiloides/toxicidade , Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Cognição , Centella/química , Triterpenos/análise , Bioensaio , Simulação por Computador
7.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328129

RESUMO

We have previously reported that a water extract (CAW) of the Ayurvedic plant Centella asiatica administered in drinking water can improve cognitive deficits in mouse models of aging and neurodegenerative diseases. Here we compared the effects of CAW administered in drinking water or the diet on cognition, measures of anxiety and depression-like behavior in healthy aged mice. Three- and eighteen-month-old male and female C57BL6 mice were administered rodent AIN-93M diet containing CAW (0, 0.2, 0.5 or 1% w/w) to provide 0, 200 mg/kg/d, 500 mg/kg/d or 1000 mg/kg/d for a total of 5 weeks. An additional group of eighteen-month-old mice were treated with CAW (10 mg/mL) in their drinking water for a total of five weeks to deliver the same exposure of CAW as the highest dietary dose (1000 mg/kg/d). CAW doses delivered were calculated based on food and water consumption measured in previous experiments. In the fourth and fifth weeks, mice underwent behavioral testing of cognition, anxiety and depression (n=12 of each sex per treatment group in each test). Aged mice of both sexes showed cognitive deficits relative to young mice while only female aged mice showed increased anxiety compared to the young female mice and no differences in depression were observed between the different ages. CAW (1000 mg/kg/d) in the drinking water improved deficits in aged mice in learning, executive function and recognition memory in both sexes and attenuated the increased measures of anxiety observed in the aged female mice. However, CAW in the diet only improved executive function in aged mice at the highest dose (1000 mg/kg/d) in both sexes and did so less robustly than when given in the water. There were no effects of CAW on depression-like behavior in aged animals regardless of whether it was administered in the diet or the water. These results suggest that CAW can ameliorate age-related changes in measures of anxiety and cognition and that the mode of administration is important for the effects of CAW on resilience to these age-related changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA