Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Biotechnol ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343620

RESUMO

In bone, an adequate oxygen (O2) supply is crucial during development, homeostasis, and healing. Oxygen-generating scaffolds (OGS) have demonstrated significant potential to enhance bone regeneration. However, the complexity of O2 delivery and signaling in vivo makes it challenging to tailor the design of OGS to precisely meet this biological requirement. We review recent advances in OGS and analyze persisting engineering and translational hurdles. We also discuss the potential of computational and machine learning (ML) models to facilitate the integration of novel imaging data with biological readouts and advanced biomanufacturing technologies. By elucidating how to tackle current challenges using cutting-edge technologies, we provide insights for transitioning from traditional to next-generation OGS to improve bone regeneration in patients.

2.
Adv Biol (Weinh) ; : e2400113, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294862

RESUMO

Tissue-engineered muscle grafts (TEMGs) are a promising treatment for volumetric muscle loss (VML). In this study, human myogenic progenitors (hMPs) cultured on electrospun fibrin microfiber bundles and evaluated the therapeutic potential of engineered hMP TEMGs in the treatment of murine tibialis anterior (TA) VML injuries is employed. In vitro, the hMP TEMGs express mature muscle markers by 21 days. Upon implantation into VML injuries, the hMP TEMGs enable remarkable regeneration. To further promote wound healing and myogenesis, human adipose-derived stem/stromal cells (hASCs) as fibroadipogenic progenitor (FAP)-like cells with the potential to secrete pro-regenerative cytokines are incorporated. The impact of dose and timing of seeding the hASCs on in vitro myogenesis and VML recovery using hMP-hASC TEMGs are investigated. The hASCs increase myogenesis of hMPs when co-cultured at 5% hASCs: 95% hMPs and with delayed seeding. Upon implantation into immunocompromised mice, hMP-hASC TEMGs increase cell survival, collagen IV deposition, and pro-regenerative macrophage recruitment, but result in excessive adipose tissue growth after 28 days. These data demonstrate the interactions of hASCs and hMPs enhance myogenesis in vitro but there remains a need to optimize treatments to minimize adipogenesis and promote full therapeutic recovery following VML treatment.

3.
Acta Biomater ; 185: 126-143, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009209

RESUMO

Oxygen (O2)-delivering tissue substitutes have shown tremendous potential for enhancing tissue regeneration, maturation, and healing. As O2 is both a metabolite and powerful signaling molecule, providing controlled delivery is crucial for optimizing its beneficial effects in the treatment of critical-sized injuries. Here, we report the design and fabrication of 3D-printed, biodegradable, O2-generating bone scaffold comprising calcium peroxide (CPO) that once hydrolytically activated, provides long-term generation of oxygen at a controlled, concentration-dependent manner, and polycaprolactone (PCL), a hydrophobic polymer that regulate the interaction of CPO with water, preventing burst release of O2 at early time points. When anoxic conditions were simulated in vitro, CPO-PCL scaffolds maintained the survival and proliferation of human adipose-derived stem/stromal cells (hASCs) relative to PCL-only controls. We assessed the in vivo osteogenic efficacy of hASC-seeded CPO-PCL scaffolds implanted in a non-healing critical-sized 4-mm calvarial defects in nude mice for 8 weeks. Even without exogenous osteoinductive factors, CPO-PCL scaffolds demonstrated increased new bone volume compared to PCL-only scaffolds as verified by both microcomputed tomography analysis and histological assessments. Lastly, we employed a quantitative 3D lightsheet microscopy platform to determine that O2-generating scaffolds had similar vascular volumes with slightly higher presence of CD31hiEmcnhi pro-osteogenic, type H vessels and increased number of Osterix+ skeletal progenitor cells relative to PCL-only scaffolds. In summary, 3D-printed O2 generating CPO-PCL scaffolds with tunable O2 release rates provide a facile, customizable strategy for effectively treating, craniofacial bone defects. STATEMENT OF SIGNIFICANCE: Oxygen(O2)-delivering bone substitutes show promise in defect repair applications by supplying O2 to the cells within or around the graft, improving cell survivability and enhancing bone matrix mineralization. A novel O2-generating bone scaffold has been 3D printed for the first-time which ensures patient and defect specificity. 3D printed calcium peroxide-polycaprolactone (CPO-PCL) bone scaffold provides uninterrupted O2 supply for 22 days allowing cell survival in deprived O2 and nutrient conditions. For the first time, O2-driven bone regenerative environment in mice calvaria has been captured by light-sheet imaging which illuminates abundance of Osterix+ cells, angiogenesis at a single cell resolution indicating active site of bone remodeling and growth in the presence of O2.


Assuntos
Camundongos Nus , Osteogênese , Oxigênio , Poliésteres , Impressão Tridimensional , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Oxigênio/química , Oxigênio/farmacologia , Humanos , Poliésteres/química , Poliésteres/farmacologia , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Camundongos , Peróxidos/química , Peróxidos/farmacologia , Cicatrização/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos
4.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617372

RESUMO

Calvarial nerves, along with vasculature, influence skull formation during development and following injury, but it remains unclear how calvarial nerves are spatially distributed during postnatal growth and aging. Studying the spatial distribution of nerves in the skull remains challenging due to a lack of methods to image and quantify 3D structures in intact bone. To visualize calvarial 3D neurovascular architecture, we imaged nerves and endothelial cells with lightsheet microscopy. We employed machine-learning-based segmentation to facilitate high-resolution characterization from post-natal day 0 (P0) to Week 80 (80wk). We found that TUBB3+ nerve density decreased with aging with the frontal bone demonstrating earlier onset age-related nerve loss than the parietal bone. In addition, nerves in the periosteum and dura mater exhibited similar yet distinct temporal patterns of nerve growth and loss. While no difference was observed in TUBB3+ nerves during skeletal maturation (P0 → 12wk), we did observe an increase in the volume of unmyelinated nerves in the dura mater. Regarding calvarial vasculature, larger CD31hiEmcn- vessel density increased with aging, while CD31hiEmcnhi vessel density was reduced. For all nerve markers studied, calvarial nerves maintained a preferential spatial association with CD31hiEmcnhi vessels that decreased with aging. Additionally, we used a model of Apert syndrome that demonstrates early coronal suture fusion to explore the impact of suture-related disease on neurovascular architecture. We identified a mild dysregulation of dural nerves and minor shifts in vessel populations. Collectively, this 3D, spatiotemporal characterization of calvarial nerves throughout the lifespan and provides new insights into age-induced neurovascular architecture.

5.
Bioengineering (Basel) ; 11(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38671729

RESUMO

Static cold storage (SCS), the current clinical gold standard for organ preservation, provides surgeons with a limited window of time between procurement and transplantation. In vascularized composite allotransplantation (VCA), this time limitation prevents many viable allografts from being designated to the best-matched recipients. Machine perfusion (MP) systems hold significant promise for extending and improving organ preservation. Most of the prior MP systems for VCA have been built and tested for large animal models. However, small animal models are beneficial for high-throughput biomolecular investigations. This study describes the design and development of a multiparametric bioreactor with a circuit customized to perfuse rat abdominal wall VCAs. To demonstrate its concept and functionality, this bioreactor system was employed in a small-scale demonstrative study in which biomolecular metrics pertaining to graft viability were evaluated non-invasively and in real time. We additionally report a low incidence of cell death from ischemic necrosis as well as minimal interstitial edema in machine perfused grafts. After up to 12 h of continuous perfusion, grafts were shown to survive transplantation and reperfusion, successfully integrating with recipient tissues and vasculature. Our multiparametric bioreactor system for rat abdominal wall VCA provides an advanced framework to test novel techniques to enhance normothermic and sub-normothermic VCA preservations in small animal models.

6.
Curr Dev Nutr ; 8(Suppl 1): 102027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38476725

RESUMO

Populations in low- and middle-income countries (LMIC) typically consume less than the recommended daily amount of protein. Alternative protein (AP) sources could help combat malnutrition, but this requires careful consideration of elements needed to further establish AP products in LMIC. Key considerations include technological, nutritional, safety, social, and economic challenges. This perspective analyzes these considerations in achieving dietary diversity in LMIC, using a combination of traditional and novel protein sources with high nutritional value, namely, soy, mycoprotein, and cultivated meat. Technological approaches to modulate the technofunctionality and bitter off-tastes of plant-sourced proteins facilitate processing and ensure consumer acceptance. Economic considerations for inputs, infrastructure for production, and transportation represent key elements to scale up AP. Dietary diversification is indispensable and LMIC cannot rely on plant proteins alone to provide adequate protein intake sustainably. Investments in infrastructure and innovation are urgently needed to offer diverse sources of protein in LMIC.

7.
Angiogenesis ; 27(1): 105-119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032405

RESUMO

The healing of calvarial bone defects is a pressing clinical problem that involves the dynamic interplay between angiogenesis and osteogenesis within the osteogenic niche. Although structural and functional vascular remodeling (i.e., angiogenic evolution) in the osteogenic niche is a crucial modulator of oxygenation, inflammatory and bone precursor cells, most clinical and pre-clinical investigations have been limited to characterizing structural changes in the vasculature and bone. Therefore, we developed a new multimodality imaging approach that for the first time enabled the longitudinal (i.e., over four weeks) and dynamic characterization of multiple in vivo functional parameters in the remodeled vasculature and its effects on de novo osteogenesis, in a preclinical calvarial defect model. We employed multi-wavelength intrinsic optical signal (IOS) imaging to assess microvascular remodeling, intravascular oxygenation (SO2), and osteogenesis; laser speckle contrast (LSC) imaging to assess concomitant changes in blood flow and vascular maturity; and micro-computed tomography (µCT) to validate volumetric changes in calvarial bone. We found that angiogenic evolution was tightly coupled with calvarial bone regeneration and corresponded to distinct phases of bone healing, such as injury, hematoma formation, revascularization, and remodeling. The first three phases occurred during the initial two weeks of bone healing and were characterized by significant in vivo changes in vascular morphology, blood flow, oxygenation, and maturity. Overall, angiogenic evolution preceded osteogenesis, which only plateaued toward the end of bone healing (i.e., four weeks). Collectively, these data indicate the crucial role of angiogenic evolution in osteogenesis. We believe that such multimodality imaging approaches have the potential to inform the design of more efficacious tissue-engineering calvarial defect treatments.


Assuntos
Regeneração Óssea , Crânio , Microtomografia por Raio-X , Crânio/diagnóstico por imagem , Crânio/irrigação sanguínea , Crânio/lesões , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Cicatrização
8.
J Transl Med ; 21(1): 609, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684651

RESUMO

Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the complex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase the likelihood of transplant rejection. Under prolonged static cold storage, highly damage-susceptible tissues such as muscle and nerve undergo irreversible degradation that may render allografts non-functional. Skin-containing VCA elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quantitative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively assessed. The use of implantable physiological status monitoring biochips, non-invasive bioimpedance monitoring to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.


Assuntos
Aloenxertos Compostos , Alotransplante de Tecidos Compostos Vascularizados , Qualidade de Vida , Transplante Homólogo , Algoritmos
9.
Curr Osteoporos Rep ; 21(5): 503-518, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37578676

RESUMO

PURPOSE OF REVIEW: This review examines the diverse functional relationships that exist between the peripheral nervous system (PNS) and bone, including key advances over the past century that inform our efforts to translate these discoveries for skeletal repair. RECENT FINDINGS: The innervation of the bone during development, homeostasis, and regeneration is highly patterned. Consistent with this, there have been nearly 100 studies over the past century that have used denervation approaches to isolate the effects of the different branches of the PNS on the bone. Overall, a common theme of balance emerges whereby an orchestration of both local and systemic neural functions must align to promote optimal skeletal repair while limiting negative consequences such as pain. An improved understanding of the functional bidirectional pathways linking the PNS and bone has important implications for skeletal development and regeneration. Clinical advances over the next century will necessitate a rigorous identification of the mechanisms underlying these effects that is cautious not to oversimplify the in vivo condition in diverse states of health and disease.


Assuntos
Osso e Ossos , Sistema Nervoso Periférico , Humanos
10.
Adv Healthc Mater ; 12(29): e2301944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565378

RESUMO

Porous tissue-engineered 3D-printed scaffolds are a compelling alternative to autografts for the treatment of large periorbital bone defects. Matching the defect-specific geometry has long been considered an optimal strategy to restore pre-injury anatomy. However, studies in large animal models have revealed that biomaterial-induced bone formation largely occurs around the scaffold periphery. Such ectopic bone formation in the periorbital region can affect vision and cause disfigurement. To enhance anatomic reconstruction, geometric mismatches are introduced in the scaffolds used to treat full thickness zygomatic defects created bilaterally in adult Yucatan minipigs. 3D-printed, anatomically-mirrored scaffolds are used in combination with autologous stromal vascular fraction of cells (SVF) for treatment. An advanced image-registration workflow is developed to quantify the post-surgical geometric mismatch and correlate it with the spatial pattern of the regenerating bone. Osteoconductive bone growth on the dorsal and ventral aspect of the defect enhances scaffold integration with the native bone while medio-lateral bone growth leads to failure of the scaffolds to integrate. A strong positive correlation is found between geometric mismatch and orthotopic bone deposition at the defect site. The data suggest that strategic mismatch >20% could improve bone scaffold design to promote enhanced regeneration, osseointegration, and long-term scaffold survivability.


Assuntos
Impressão Tridimensional , Alicerces Teciduais , Suínos , Animais , Porco Miniatura , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Osteogênese
11.
Bioengineering (Basel) ; 10(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37106621

RESUMO

Vascularized composite allotransplantation addresses injuries to complex anatomical structures such as the face, hand, and abdominal wall. Prolonged static cold storage of vascularized composite allografts (VCA) incurs damage and imposes transportation limits to their viability and availability. Tissue ischemia, the major clinical indication, is strongly correlated with negative transplantation outcomes. Machine perfusion and normothermia can extend preservation times. This perspective introduces multiplexed multi-electrode bioimpedance spectroscopy (MMBIS), an established bioanalytical method to quantify the interaction of the electrical current with tissue components, capable of measuring tissue edema, as a quantitative, noninvasive, real-time, continuous monitoring technique to provide crucially needed assessment of graft preservation efficacy and viability. MMBIS must be developed, and appropriate models explored to address the highly complex multi-tissue structures and time-temperature changes of VCA. Combined with artificial intelligence (AI), MMBIS can serve to stratify allografts for improvement in transplantation outcomes.

12.
Nat Chem Biol ; 19(9): 1127-1137, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37024727

RESUMO

The interleukin-4 (IL-4) cytokine plays a critical role in modulating immune homeostasis. Although there is great interest in harnessing this cytokine as a therapeutic in natural or engineered formats, the clinical potential of native IL-4 is limited by its instability and pleiotropic actions. Here, we design IL-4 cytokine mimetics (denoted Neo-4) based on a de novo engineered IL-2 mimetic scaffold and demonstrate that these cytokines can recapitulate physiological functions of IL-4 in cellular and animal models. In contrast with natural IL-4, Neo-4 is hyperstable and signals exclusively through the type I IL-4 receptor complex, providing previously inaccessible insights into differential IL-4 signaling through type I versus type II receptors. Because of their hyperstability, our computationally designed mimetics can directly incorporate into sophisticated biomaterials that require heat processing, such as three-dimensional-printed scaffolds. Neo-4 should be broadly useful for interrogating IL-4 biology, and the design workflow will inform targeted cytokine therapeutic development.


Assuntos
Citocinas , Interleucina-4 , Animais , Transdução de Sinais
13.
Microvasc Res ; 148: 104518, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36894024

RESUMO

Assessing intravascular blood oxygen saturation (SO2) is crucial for characterizing in vivo microenvironmental changes in preclinical models of injury and disease. However, most conventional optical imaging techniques for mapping in vivo SO2 assume or compute a single value of the optical path-length in tissue. This is especially detrimental when mapping in vivo SO2 in experimental disease or wound healing models that are characterized by vascular and tissue remodeling. Therefore, to circumvent this limitation we developed an in vivo SO2 mapping technique that utilizes hemoglobin-based intrinsic optical signal (IOS) imaging combined with a vascular-centric estimation of optical path-lengths. In vivo arterial and venous SO2 distributions derived with this approach closely matched those reported in the literature, while those derived using the single path-length (i.e. conventional) approach did not. Moreover, in vivo cerebrovascular SO2 strongly correlated (R2 > 0.7) with changes in systemic SO2 measured with a pulse oximeter during hypoxia and hyperoxia paradigms. Finally, in a calvarial bone healing model, in vivo SO2 assessed over four weeks was spatiotemporally correlated with angiogenesis and osteogenesis (R2 > 0.6). During the early stages of bone healing (i.e. day 10), angiogenic vessels surrounding the calvarial defect exhibited mean SO2 that was elevated by10 % (p < 0.05) relative to that observed at a later stage (i.e., day 26), indicative of their role in osteogenesis. These correlations were not evident with the conventional SO2 mapping approach. The feasibility of our wide field-of-view in vivo SO2 mapping approach illustrates its potential for characterizing the microvascular environment in applications ranging from tissue engineering to cancer.


Assuntos
Hiperóxia , Saturação de Oxigênio , Humanos , Oximetria/métodos , Oxigênio , Artérias
14.
Bioengineering (Basel) ; 9(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421094

RESUMO

Tissue engineering strategies that combine human pluripotent stem cell-derived myogenic progenitors (hPDMs) with advanced biomaterials provide promising tools for engineering 3D skeletal muscle grafts to model tissue development in vitro and promote muscle regeneration in vivo. We recently demonstrated (i) the potential for obtaining large numbers of hPDMs using a combination of two small molecules without the overexpression of transgenes and (ii) the application of electrospun fibrin microfiber bundles for functional skeletal muscle restoration following volumetric muscle loss. In this study, we aimed to demonstrate that the biophysical cues provided by the fibrin microfiber bundles induce hPDMs to form engineered human skeletal muscle grafts containing multinucleated myotubes that express desmin and myosin heavy chains and that these grafts could promote regeneration following skeletal muscle injuries. We tested a genetic PAX7 reporter line (PAX7::GFP) to sort for more homogenous populations of hPDMs. RNA sequencing and gene set enrichment analyses confirmed that PAX7::GFP-sorted hPDMs exhibited high expression of myogenic genes. We tested engineered human skeletal muscle grafts derived from PAX7::GFP-sorted hPDMs within in vivo skeletal muscle defects by assessing myogenesis, engraftment and immunogenicity using immunohistochemical staining. The PAX7::GFP-sorted groups had moderately high vascular infiltration and more implanted cell association with embryonic myosin heavy chain (eMHC) regions, suggesting they induced pro-regenerative microenvironments. These findings demonstrated the promise for the use of PAX7::GFP-sorted hPDMs on fibrin microfiber bundles and provided some insights for improving the cell-biomaterial system to stimulate more robust in vivo skeletal muscle regeneration.

15.
Am J Physiol Cell Physiol ; 323(5): C1524-C1538, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189973

RESUMO

Vascularization is a crucial step during musculoskeletal tissue regeneration via bioengineered constructs or grafts. Functional vasculature provides oxygen and nutrients to the graft microenvironment, facilitates wound healing, enhances graft integration with host tissue, and ensures the long-term survival of regenerating tissue. Therefore, imaging de novo vascularization (i.e., angiogenesis), changes in microvascular morphology, and the establishment and maintenance of perfusion within the graft site (i.e., vascular microenvironment or VME) can provide essential insights into engraftment, wound healing, as well as inform the design of tissue engineering (TE) constructs. In this review, we focus on state-of-the-art imaging approaches for monitoring the VME in craniofacial TE applications, as well as future advances in this field. We describe how cutting-edge in vivo and ex vivo imaging methods can yield invaluable information regarding VME parameters that can help characterize the effectiveness of different TE constructs and iteratively inform their design for enhanced craniofacial bone regeneration. Finally, we explicate how the integration of novel TE constructs, preclinical model systems, imaging techniques, and systems biology approaches could usher in an era of "image-based tissue engineering."


Assuntos
Osso e Ossos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Regeneração Óssea , Neovascularização Patológica , Cicatrização , Alicerces Teciduais , Neovascularização Fisiológica
16.
Biofabrication ; 14(3)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35617927

RESUMO

Porous Magnesium (Mg) is a promising biodegradable scaffold for treating critical-size bone defects, and as an essential element for human metabolism, Mg has shown sufficient biocompatibility. Its elastic moduli and yield strengths are closer to those of cortical bone than common, inert metallic implants, effectively reducing stress concentrations around host tissue as well as stress shielding. More importantly, Mg can degrade and be absorbed in the human body in a safe and controlled manner, thereby reducing the need for second surgeries to remove implants. The development of porous Mg scaffolds via conventional selective laser melting techniques has been limited due to Mg's low boiling point, high vapor pressures, high reactivity, and non-ideal microstructures in additively manufactured parts. Here we present an exciting alternative to conventional additive techniques: 3D weaving with Mg wires that have controlled chemistries and microstructures. The weaving process offers high throughput manufacturing as well as porous architectures that can be optimized for stiffness and porosity with topology optimization. Once woven, we dip-coat the weaves with polylactic acid to enhance their strength and corrosion resistance. Following fabrication, we characterize their mechanical properties, corrosion behavior, and cell compatibilityin vitro, and we use an intramuscular implantation model to evaluate theirin vivocorrosion behavior and tissue response.


Assuntos
Magnésio , Próteses e Implantes , Osso e Ossos , Módulo de Elasticidade , Humanos , Magnésio/química , Porosidade , Alicerces Teciduais/química
17.
3D Print Med ; 8(1): 9, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384521

RESUMO

Bone tissue engineering strategies aimed at treating critical-sized craniofacial defects often utilize novel biomaterials and scaffolding. Rapid manufacturing of defect-matching geometries using 3D-printing strategies is a promising strategy to treat craniofacial bone loss to improve aesthetic and regenerative outcomes. To validate manufacturing quality, a robust, three-dimensional quality assurance pipeline is needed to provide an objective, quantitative metric of print quality if porous scaffolds are to be translated from laboratory to clinical settings. Previously published methods of assessing scaffold print quality utilized one- and two-dimensional measurements (e.g., strut widths, pore widths, and pore area) or, in some cases, the print quality of a single phantom is assumed to be representative of the quality of all subsequent prints. More robust volume correlation between anatomic shapes has been accomplished; however, it requires manual user correction in challenging cases such as porous objects like bone scaffolds. Here, we designed porous, anatomically-shaped scaffolds with homogenous or heterogenous porous structures. We 3D-printed the designs with acrylonitrile butadiene styrene (ABS) and used cone-beam computed tomography (CBCT) to obtain 3D image reconstructions. We applied the iterative closest point algorithm to superimpose the computational scaffold designs with the CBCT images to obtain a 3D volumetric overlap. In order to avoid false convergences while using an autonomous workflow for volumetric correlation, we developed an independent iterative closest point (I-ICP10) algorithm using MATLAB®, which applied ten initial conditions for the spatial orientation of the CBCT images relative to the original design. Following successful correlation, scaffold quality can be quantified and visualized on a sub-voxel scale for any part of the volume.

18.
ACS Biomater Sci Eng ; 8(11): 4610-4612, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35157425

RESUMO

Tissue engineering has the potential to revolutionize treatments for patients suffering from critical-sized craniofacial bone defects, but it has yet to make a substantial impact in clinical practice. One of the barriers to improving the design of tissue-engineered bone grafts (TEBGs) is the lack of adequate techniques to study how transplanted cells, host cells, and biomaterials interact to facilitate the dynamic healing process. In this perspective, we discuss recent advances in quantitative imaging that may be adapted to provide high spatiotemporal resolution of the 3D tissue microenvironment during cranial bone regeneration. The adoption and application of these imaging technologies will provide a more rigorous framework for evaluating TEBG performance and enable the development of next-generation TEBGs for craniofacial repair.


Assuntos
Regeneração Óssea , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Osso e Ossos , Materiais Biocompatíveis
19.
Biomaterials ; 282: 121392, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134701

RESUMO

Critical-sized midfacial bone defects present a unique clinical challenge due to their complex three-dimensional shapes and intimate associations with sensory organs. To address this challenge, a point-of-care treatment strategy for functional, long-term regeneration of 2 cm full-thickness segmental defects in the zygomatic arches of Yucatan minipigs is evaluated. A digital workflow is used to 3D-print anatomically precise, porous, biodegradable scaffolds from clinical-grade poly-ε-caprolactone and decellularized bone composites. The autologous stromal vascular fraction of cells (SVF) is isolated from adipose tissue extracts and infused into the scaffolds that are implanted into the zygomatic ostectomies. Bone regeneration is assessed up to 52 weeks post-operatively in acellular (AC) and SVF groups (BV/DV = 0.64 ± 0.10 and 0.65 ± 0.10 respectively). In both treated groups, bone grows from the adjacent tissues and restores the native anatomy. Significantly higher torque is required to fracture the bone-scaffold interface in the SVF (7.11 ± 2.31 N m) compared to AC groups (2.83 ± 0.23 N m). Three-dimensional microcomputed tomography analysis reveals two distinct regenerative patterns: osteoconduction along the periphery of scaffolds to form dense lamellar bone and small islands of woven bone deposits growing along the struts in the scaffold interior. Overall, this study validates the efficacy of using 3D-printed bioactive scaffolds with autologous SVF to restore geometrically complex midfacial bone defects of clinically relevant sizes while also highlighting remaining challenges to be addressed prior to clinical translation.


Assuntos
Fração Vascular Estromal , Alicerces Teciduais , Animais , Regeneração Óssea , Osteogênese , Sistemas Automatizados de Assistência Junto ao Leito , Impressão Tridimensional , Suínos , Porco Miniatura , Microtomografia por Raio-X
20.
Biomaterials ; 280: 121318, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922272

RESUMO

Low oxygen (O2) diffusion into large tissue engineered scaffolds hinders the therapeutic efficacy of transplanted cells. To overcome this, we previously studied hollow, hyperbarically-loaded microtanks (µtanks) to serve as O2 reservoirs. To adapt these for bone regeneration, we fabricated biodegradable µtanks from polyvinyl alcohol and poly (lactic-co-glycolic acid) and embedded them to form 3D-printed, porous poly-ε-caprolactone (PCL)-µtank scaffolds. PCL-µtank scaffolds were loaded with pure O2 at 300-500 psi. When placed at atmospheric pressures, the scaffolds released O2 over a period of up to 8 h. We confirmed the inhibitory effects of hypoxia on the osteogenic differentiation of human adipose-derived stem cells (hASCs and we validated that µtank-mediated transient hyperoxia had no toxic impacts on hASCs, possibly due to upregulation of endogenous antioxidant regulator genes. We assessed bone regeneration in vivo by implanting O2-loaded, hASC-seeded, PCL-µtank scaffolds into murine calvarial defects (4 mm diameters × 0.6 mm height) and subcutaneously (4 mm diameter × 8 mm height). In both cases we observed increased deposition of extracellular matrix in the O2 delivery group along with greater osteopontin coverages and higher mineral deposition. This study provides evidence that even short-term O2 delivery from PCL-µtank scaffolds may enhance hASC-mediated bone tissue regeneration.


Assuntos
Osteogênese , Engenharia Tecidual , Animais , Regeneração Óssea , Diferenciação Celular , Camundongos , Oxigênio/farmacologia , Poliésteres/farmacologia , Impressão Tridimensional , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA