Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585834

RESUMO

Inflammation is a key contributor to stroke pathogenesis and drives exacerbated brain damage leading to poor outcome. Interleukin-1 (IL-1) is an important regulator of post-stroke inflammation, and blocking its actions is beneficial in pre-clinical stroke models and safe in the clinical setting. IL-1α and IL-1ß are the two major IL-1 type 1 receptor (IL-1R1) agonists from the IL-1 family. The distinct roles of both isoforms, and particularly that of IL-1α, remain largely unknown. Here we show that IL-1α and IL-1ß have different spatio-temporal expression profiles in the brain after experimental stroke, with early microglial IL-1α expression (4 h) and delayed IL-1ß expression in infiltrated neutrophils and a small microglial subset (24-72 h). We examined the specific contribution of microglial-derived IL-1α in experimental permanent and transient ischemic stroke through cell-specific tamoxifen-inducible Cre-loxP-mediated recombination. Microglial IL-1α deletion did not influence acute brain damage, cerebral blood flow, IL-1ß expression, neutrophil infiltration, microglial nor endothelial activation after ischemic stroke. However, microglial IL-1α knock out (KO) mice showed reduced peri-infarct vessel density and reactive astrogliosis at 14 days post-stroke, alongside a worse functional recovery. RNA sequencing analysis and subsequent pathway analysis on ipsilateral/contralateral cortex 4 h after stroke revealed a downregulation of the neuronal CREB signaling pathway in microglial IL-1α KO compared to WT mice. Our study identifies for the first time a critical role for microglial IL-1α on neuronal activity, neurorepair and functional recovery after stroke, highlighting the importance of targeting specific IL-1 mechanisms in brain injury to develop more effective therapies.

4.
RSC Adv ; 12(49): 31878-31888, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380961

RESUMO

Mesoporous silica nanoparticles (MSN) characterized by large surface area, pore volume, tunable chemistry, and biocompatibility have been widely studied in nanomedicine as imaging and therapeutic carriers. Most of these studies focused on spherical particles. In contrast, mesoporous silica rods (MSR) that are more challenging to prepare have been less investigated in terms of toxicity, cellular uptake, or biodistribution. Interestingly, previous studies showed that silica rods penetrate fibrous tissues or mucus layers more efficiently than their spherical counterparts. Recently, we reported the synthesis of MSR with distinct aspect ratios and validated their use in multiple imaging modalities by loading the pores with maghemite nanocrystals and functionalizing the silica surface with green and red fluorophores. Herein, based on an initial hypothesis of high liver accumulation of the MSR and a future vision that they could be used for early diagnosis or therapy in fibrotic liver diseases; the cytotoxicity and cellular uptake of MSR were assessed in zebrafish liver (ZFL) cells and the in vivo safety and biodistribution was investigated via fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI) employing zebrafish larvae and rodents. The selection of these animal models was prompted by the well-established fatty diet protocols inducing fibrotic liver in zebrafish or rodents that serve to investigate highly prevalent liver conditions such as non-alcoholic fatty liver disease (NAFLD). Our study demonstrated that magnetic MSR do not cause cytotoxicity in ZFL cells regardless of the rods' length and surface charge (for concentrations up to 50 µg ml-1, 6 h) and that MSR are taken up by the ZFL cells in large amounts despite their length of ∼1 µm. In zebrafish larvae, it was observed that they could be safely exposed to high MSR concentrations (up to 1 mg ml-1 for 96 h) and that the rods pass through the liver without causing toxicity. The high accumulation of MSR in rodents' livers at short post-injection times (20% of the administered dose) was confirmed by both FMI and MRI, highlighting the utility of the MSR for liver imaging by both techniques. Our results could open new avenues for the use of rod-shaped silica particles in the diagnosis of pathological liver conditions.

5.
ACS Appl Nano Mater ; 5(2): 2113-2125, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35252779

RESUMO

Multifunctional magnetic nanocomposites based on mesoporous silica have a wide range of potential applications in catalysis, biomedicine, or sensing. Such particles combine responsiveness to external magnetic fields with other functionalities endowed by the agents loaded inside the pores or conjugated to the particle surface. Different applications might benefit from specific particle morphologies. In the case of biomedical applications, mesoporous silica nanospheres have been extensively studied while nanorods, with a more challenging preparation, have attracted much less attention despite the positive impact on the therapeutic performance shown by seminal studies. Here, we report on a sol-gel synthesis of mesoporous rodlike silica particles of two distinct lengths (1.4 and 0.9 µm) and aspect ratios (4.7 and 2.2) using Pluronic P123 as a structure-directing template and rendering ∼1 g of rods per batch. Iron oxide nanoparticles have been synthesized within the pores yielding maghemite (γ-Fe2O3) nanocrystals of elongated shape (∼7 nm × 5 nm) with a [110] preferential orientation along the rod axis and a superparamagnetic character. The performance of the rods as T2-weighted MRI contrast agents has also been confirmed. In a subsequent step, the mesoporous silica rods were loaded with a cerium compound and their surface was functionalized with fluorophores (fluorescamine and Cyanine5) emitting at λ = 525 and 730 nm, respectively, thus highlighting the possibility of multiple imaging modalities. The biocompatibility of the rods was evaluated in vitro in a zebrafish (Danio rerio) liver cell line (ZFL), with results showing that neither long nor short rods with magnetic particles caused cytotoxicity in ZFL cells for concentrations up to 50 µg/ml. We advocate that such nanocomposites can find applications in medical imaging and therapy, where the influence of shape on performance can be also assessed.

6.
J Cereb Blood Flow Metab ; 42(2): 237-252, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34229512

RESUMO

The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging. A complete biodistribution study in naïve (n = 59) and ischemic (n = 51) mice receiving intravenous or intraarterial nanocapsules, with two different magnet devices and imaged from 30 min to 48 h, showed an extraordinary advantage of the intraarterial route for brain delivery with a specific improvement in cortical targeting when using a magnetic device in both control and ischemic conditions. Safety was evaluated in ischemic mice (n = 69) showing no signs of systemic toxicity nor increasing mortality, infarct lesions or hemorrhages. In conclusion, the challenging brain delivery of therapeutic nanomaterials could be efficiently and safely overcome with a controlled endovascular administration and magnetic targeting, which could be considered in the context of endovascular interventions for the delivery of multiple treatments for stroke.


Assuntos
Carbocianinas , Meios de Contraste , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Nanocápsulas , Imagem Óptica , Acidente Vascular Cerebral , Animais , Carbocianinas/química , Carbocianinas/farmacologia , Meios de Contraste/química , Meios de Contraste/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico
7.
Stem Cell Res Ther ; 12(1): 552, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702368

RESUMO

BACKGROUND: Cell-based therapeutic strategies have been proposed as an alternative for brain repair after stroke, but their clinical application has been hampered by potential adverse effects in the long term. The present study was designed to test the effect of the secretome of endothelial progenitor cells (EPCs) from stroke patients (scCM) on in vitro human models of angiogenesis and vascular barrier. METHODS: Two different scCM batches were analysed by mass spectrometry and a proteome profiler. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used for designing angiogenesis studies (proliferation, migration, and tubulogenesis) or in vitro models of EC monolayer (confluent monolayer ECs-CMECs) and blood-brain barrier (BBB; brain-like ECs-BLECs). Cells were treated with scCM (5 µg/mL) or protein-free endothelial basal medium (scEBM-control). CMECs or BLECs were exposed (6 h) to oxygen-glucose deprivation (OGD) conditions (1% oxygen and glucose-free medium) or normoxia (control-5% oxygen, 1 g/L of glucose) and treated with scCM or scEBM during reoxygenation (24 h). RESULTS: The analysis of different scCM batches showed a good reproducibility in terms of protein yield and composition. scCM increased CD34+-EC proliferation, tubulogenesis, and migration compared to the control (scEBM). The proteomic analysis of scCM revealed the presence of growth factors and molecules modulating cell metabolism and inflammatory pathways. Further, scCM decreased the permeability of CMECs and upregulated the expression of the junctional proteins such as occludin, VE-cadherin, and ZO-1. Such effects were possibly mediated through the activation of the interferon pathway and a moderate downregulation of Wnt signalling. Furthermore, OGD increased the permeability of both CMECs and BLECs, while scCM prevented the OGD-induced vascular leakage in both models. These effects were possibly mediated through the upregulation of junctional proteins and the regulation of MAPK/VEGFR2 activity. CONCLUSION: Our results suggest that scCM promotes angiogenesis and the maturation of newly formed vessels while restoring the BBB function in ischemic conditions. In conclusion, our results highlight the possibility of using EPC-secretome as a therapeutic alternative to promote brain angiogenesis and protect from ischemia-induced vascular leakage.


Assuntos
Células Progenitoras Endoteliais , Acidente Vascular Cerebral , Barreira Hematoencefálica , Humanos , Hipóxia , Proteômica , Reprodutibilidade dos Testes
8.
Front Neurol ; 12: 662235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234733

RESUMO

Ischemic stroke is a leading cause of death and disability worldwide with effective acute thrombolytic treatments. However, brain repair mechanisms related to spontaneous or rehabilitation-induced recovery are still under investigation, and little is known about the molecules involved. The present study examines the potential role of angiogenin (ANG), a known regulator of cell function and metabolism linked to neurological disorders, focusing in the neurogenic subventricular zone (SVZ). Angiogenin expression was examined in the mouse SVZ and in SVZ-derived neural stem cells (NSCs), which were exposed to exogenous ANG treatment during neurosphere formation as well as in other neuron-like cells (SH-SY5Y). Additionally, male C57Bl/6 mice underwent a distal permanent occlusion of the middle cerebral artery to study endogenous and exercise-induced expression of SVZ-ANG and neuroblast migration. Our results show that SVZ areas are rich in ANG, primarily expressed in DCX+ neuroblasts but not in nestin+NSCs. In vitro, treatment with ANG increased the number of SVZ-derived NSCs forming neurospheres but could not modify SH-SY5Y neurite differentiation. Finally, physical exercise rapidly increased the amount of endogenous ANG in the ipsilateral SVZ niche after ischemia, where DCX-migrating cells increased as part of the post-stroke neurogenesis process. Our findings position for the first time ANG in the SVZ during post-stroke recovery, which could be linked to neurogenesis.

9.
J Extracell Vesicles ; 10(5): e12058, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33738082

RESUMO

In the present study the use of extracellular vesicles (EVs) as vehicles for therapeutic enzymes in lysosomal storage disorders was explored. EVs were isolated from mammalian cells overexpressing alpha-galactosidase A (GLA) or N-sulfoglucosamine sulfohydrolase (SGSH) enzymes, defective in Fabry and Sanfilippo A diseases, respectively. Direct purification of EVs from cell supernatants was found to be a simple and efficient method to obtain highly active GLA and SGSH proteins, even after EV lyophilization. Likewise, EVs carrying GLA (EV-GLA) were rapidly uptaken and reached the lysosomes in cellular models of Fabry disease, restoring lysosomal functionality much more efficiently than the recombinant enzyme in clinical use. In vivo, EVs were well tolerated and distributed among all main organs, including the brain. DiR-labelled EVs were localized in brain parenchyma 1 h after intra-arterial (internal carotid artery) or intravenous (tail vein) administrations. Moreover, a single intravenous administration of EV-GLA was able to reduce globotriaosylceramide (Gb3) substrate levels in clinically relevant tissues, such kidneys and brain. Overall, our results demonstrate that EVs from cells overexpressing lysosomal enzymes act as natural protein delivery systems, improving the activity and the efficacy of the recombinant proteins and facilitating their access to organs neglected by conventional enzyme replacement therapies.


Assuntos
Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Doenças por Armazenamento dos Lisossomos/terapia , Veículos Farmacêuticos , Animais , Encéfalo/metabolismo , Células CHO , Clonagem Molecular , Cricetulus , Doença de Fabry/enzimologia , Doença de Fabry/terapia , Células HEK293 , Humanos , Hidrolases/metabolismo , Doenças por Armazenamento dos Lisossomos/enzimologia , Lisossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Veículos Farmacêuticos/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Triexosilceramidas/metabolismo , alfa-Galactosidase/metabolismo
10.
Nanoscale ; 13(5): 3306, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33522541

RESUMO

Correction for 'PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities' by Yajie Zhang et al., Nanoscale, 2020, 12, 4988-5002, DOI: .

11.
Nanoscale ; 12(8): 4988-5002, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32057060

RESUMO

Designing theranostic nanocarriers with high protein payload and multimodality tracking without cross interferences between the different imaging probes and the delicate protein cargo is challenging. Here, chemical modifications of poly(lactic-co-glycolic acid) (PLGA) to produce nanocapsules (NCs) that incorporate several imaging moieties are reported. The biocompatible and biodegradable PLGA-NCs can be endowed with a magnetic resonance imaging (MRI) reporter, two fluorescence imaging probes (blue/NIR) and a positron emission tomography (PET) reporter. The modular integration of these imaging moieties into the shell of the NCs is successfully achieved without affecting the morphochemical properties of the nanocarrier or the protein loading capacity. In vivo biodistribution of the NCs is monitored by MRI, PET and NIRF and the results from different techniques are analyzed comparatively. The viabilities of two different human endothelial cells in vitro show no toxicity for NC concentration up to 100 µg mL-1. The morbidity of mice for 2 weeks after systemic administration and the hepatic/pancreatic enzymes at the plasma level indicate their in vivo biosafety. In summary, the new theranostic PLGA nanoplatform presented here shows versatile in vitro/in vivo multimodal imaging capabilities, excellent biosafety and over 1 wt% protein loading.


Assuntos
Meios de Contraste , Portadores de Fármacos , Imageamento por Ressonância Magnética , Nanoestruturas , Imagem Óptica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular , Meios de Contraste/química , Meios de Contraste/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
12.
Nanomedicine ; 20: 101986, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059794

RESUMO

The potential biomedical applications of the MNPs nanohybrids coated with m-carboranylphosphinate (1-MNPs) as a theranostic biomaterial for cancer therapy were tested. The cellular uptake and toxicity profile of 1-MNPs from culture media by human brain endothelial cells (hCMEC/D3) and glioblastoma multiform A172 cell line were demonstrated. Prior to testing 1-MNPs' in vitro toxicity, studies of colloidal stability of the 1-MNPs' suspension in different culture media and temperatures were carried out. TEM images and chemical titration confirmed that 1-MNPs penetrate into cells. Additionally, to explore 1-MNPs' potential use in Boron Neutron Capture Therapy (BNCT) for treating cancer locally, the presence of the m-carboranyl coordinated with the MNPs core after uptake was proven by XPS and EELS. Importantly, thermal neutrons irradiation in BNCT reduced by 2.5 the number of cultured glioblastoma cells after 1-MNP treatment, and the systemic administration of 1-MNPs in mice was well tolerated with no major signs of toxicity.


Assuntos
Materiais Biocompatíveis/química , Boro/química , Nanopartículas de Magnetita , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Coloides/química , Difusão , Células Endoteliais/metabolismo , Glioblastoma/metabolismo , Glioblastoma/ultraestrutura , Humanos , Hidrodinâmica , Ligantes , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Nêutrons , Suspensões
13.
Am J Physiol Cell Physiol ; 315(5): C664-C674, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133323

RESUMO

Stroke is one of the leading causes of death and disability worldwide. Tremendous improvements have been achieved in the acute care of stroke patients with the implementation of stroke units, thrombolytic drugs, and endovascular trombectomies. However, stroke survivors with neurological deficits require long periods of neurorehabilitation, which is the only approved therapy for poststroke recovery. With this scenario, more treatments are urgently needed, and only the understanding of the mechanisms of brain recovery might contribute to identify new therapeutic agents. Fortunately, brain injury after stroke is counteracted by the birth and migration of several populations of progenitor cells towards the injured areas, where angiogenesis and vascular remodeling play a key role providing trophic support and guidance during neurorepair. Endothelial progenitor cells (EPCs) constitute a pool of circulating bone-marrow derived cells that mobilize after an ischemic injury with the potential to incorporate into the damaged endothelium, to form new vessels, or to secrete trophic factors stimulating vessel remodeling. The circulating levels of EPCs are altered after stroke, and several subpopulations have proved to boost brain neurorepair in preclinical models of cerebral ischemia. The goal of this review is to discuss the current state of the neuroreparative actions of EPCs, focusing on their paracrine signaling mechanisms thorough their secretome and released extracellular vesicles.


Assuntos
Isquemia Encefálica/sangue , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica , Acidente Vascular Cerebral/sangue , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Lesões Encefálicas/sangue , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Isquemia Encefálica/patologia , Movimento Celular/genética , Humanos , Neurogênese/genética , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA