RESUMO
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) receptor, angiotensin-converting enzyme 2 (ACE2), has been identified in the human testis, but the risk of transmission of SARS-CoV-2 through sexual intercourse still needs to be defined. The goal of our study was to determine if SARS-CoV-2 is detectable in the semen of patients suffering or recovering from coronavirus disease-19 (COVID-19), still testing positive at nasopharyngeal swabs but showing mild or no symptoms at the time of sampling. Detection of SARS-CoV-2 RNA in semen was performed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR targeting open reading frame (ORF) 1ab. Medical history of the enrolled patients was taken, including COVID-19-correlated symptoms, both at the time of diagnosis and at the time of interview. Results of real-time RT-PCR and nested PCR in semen showed no evidence of SARS-CoV-2 RNA in the 36 patients suffering or recovering from COVID-19 but still positive in a nasopharyngeal swab, from over 116 patients enrolled in the study. SARS-CoV-2 detection and persistence in semen would have an impact on both clinical practice and public health strategies, but our results would suggest that SARS-CoV-2 is not present in the semen of men recovering from COVID-19.
Assuntos
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Masculino , Pandemias , RNA Viral/genética , SARS-CoV-2/genética , SêmenRESUMO
COVID-19 is a current global threat, and the characterization of antibody response is vitally important to update vaccine development and strategies. In this study we assessed SARS-CoV-2 antibody concentrations in SARS-CoV-2 positive patients (N = 272) and subjects vaccinated with the BNT162b2 m-RNA COVID-19 vaccine (N = 1256). For each participant, socio-demographic data, COVID-19 vaccination records, serological analyses, and SARS-CoV-2 infection status were collected. IgG antibodies against S1/S2 antigens of SARS-CoV-2 were detected. Almost all vaccinated subjects (99.8%) showed a seropositivity to anti-SARS-COV-2 IgG and more than 80% of vaccinated subjects had IgG concentrations > 200 AU/mL. In a Tobit multivariable regression analysis, SARS-CoV-2 vaccination was statistically significantly associated with increased IgG concentrations (ß coef = 266.4; p < 0.001). A statistically significant reduction in SARS-CoV-2 IgG concentrations was found with older age (ß coef = -1.96 per year increase; p < 0.001), male sex (ß coef = -22.3; p < 0.001), and days after immunization (ß coef = -1.67 per day increase; p < 0.001). Our findings could support the vaccination campaigns confirming the high immunogenicity of the SARS-CoV-2 vaccine under investigation with respect to the natural infection. Further studies will be required for evaluating the role of age and days after immunization in the persistence of vaccine antibodies and protection from the disease.
RESUMO
Norovirus (NoV) is one of the major causes of diarrhoeal disease with epidemic, outbreak and sporadic patterns in humans of all ages worldwide. NoVs of genotype GII.4 cause nearly 80-90 % of all NoV infections in humans. Periodically, some GII.4 strains become predominant, generating major pandemic variants. Retrospective analysis of the GII.4 NoV strains detected in Italy between 2007 and 2013 indicated that the pandemic variant New Orleans 2009 emerged in Italy in the late 2009, became predominant in 2010-2011 and continued to circulate in a sporadic fashion until April 2013. Upon phylogenetic analysis based on the small diagnostic regions A and C, the late New Orleans 2009 NoVs circulating during 2011-2013 appeared to be genetically different from the early New Orleans 2009 strains that circulated in 2010. For a selection of strains, a 3.2âkb genome portion at the 3' end was sequenced. In the partial ORF1 and in the full-length ORF2 and ORF3, the 2011-2013 New Orleans NoVs comprised at least three distinct genetic subclusters. By comparison with sequences retrieved from the databases, these subclusters were also found to circulate globally, suggesting that the local circulation reflected repeated introductions of different strains, rather than local selection of novel viruses. Phylogenetic subclustering did not correlate with changes in residues located in predicted putative capsid epitopes, although several changes affected the P2 domain in epitopes A, C, D and E.