Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Perfusion ; : 2676591241288793, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365267

RESUMO

INTRODUCTION: Hypoalbuminemia is predictive of mortality in critically ill patients, especially those with cardiac etiologies of illness. The objective of this study was to determine the association of albumin level pre-cannulation for veno-arterial (V-A) extracorporeal membrane oxygenation (ECMO) and important clinical hospital outcomes. METHODS: This was a retrospective, observational cohort study of albumin levels in patients with cardiogenic shock requiring V-A ECMO between December 2015 and August 2021 in a single, high-volume ECMO center. The primary outcome was in-hospital mortality. RESULTS: Of 434 patients assessed, 318 were included. The overall mean pre-ECMO albumin was 3 ± 0.8 g/dL and mean albumin at 72 hours post-cannulation was 2.7 ± 0.5 g/dL. For patients with pre-ECMO albumin ≤3 g/dL vs. >3 g/dL, in-hospital mortality was 44.9% vs. 27.5%, respectively (p = .002). In multivariable logistic regression analysis, higher albumin (per 1 g/dL increase) at time of V-A ECMO initiation was associated with decreased odds of in-hospital mortality (OR, 0.68; 95% CI, 0.48-0.96; p = .03). Patients with a pre-ECMO albumin ≤3 g/dL required significantly more platelet transfusions and had higher incidence of gastrointestinal bleeding during V-A ECMO support (both p < .05). CONCLUSIONS: Hypoalbuminemia at time of cannulation is significantly associated with in-hospital mortality and ECMO-related complications including platelet transfusion and gastrointestinal bleeding. Albumin levels at the time of consideration of V-A ECMO may serve as a key prognostic indicator and may assist in effective decision-making regarding this invasive and costly resource.

2.
J Virol ; 98(10): e0128824, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39264207

RESUMO

SARS-CoV-2 infects via the respiratory tract, but COVID-19 includes an array of non-respiratory symptoms, among them gastrointestinal (GI) manifestations such as vomiting and diarrhea. Here we investigated the GI pathology of SARS-CoV-2 infections in rhesus macaques and humans. Macaques experienced mild infection with USA-WA1/2020 and shed viral RNA in the respiratory tract and stool, including subgenomic RNA indicative of replication in the GI tract. Intestinal immune cell populations were disturbed, with significantly fewer proliferating (Ki67+) jejunal B cells in SARS-CoV-2-infected macaques than uninfected ones. Modest translocation of bacteria/bacterial antigen was observed across the colonic epithelium, with a corresponding significant increase in plasma soluble CD14 (sCD14) that may be induced by LPS. Human plasma demonstrated significant decreases in interleukin (IL)-6 and sCD14 upon recovery from COVID-19, suggesting resolution of inflammation and response to translocated bacteria. sCD14 significantly positively correlated with zonulin, an indicator of gut barrier integrity, and IL-6. These results demonstrate that GI perturbations such as microbial translocation can occur in even mild SARS-CoV-2 infections and may contribute to the COVID-19 inflammatory state.IMPORTANCEThis study investigates gastrointestinal (GI) barrier disruption in SARS-CoV-2 infections and how it may contribute to disease. We observed bacteria or bacterial products crossing from the colon interior (the lumen) to the lamina propria during SARS-CoV-2 infection in macaques. Bacteria/bacterial products are tolerated in the lumen but may induce immune responses if they translocate to the lamina propria. We also observed a significant increase in soluble CD14, which is associated with an immune response to bacterial products. In addition, we observed that humans recovering from COVID-19 experienced a significant decrease in soluble CD14, as well as the inflammatory marker interleukin (IL)-6. IL-6 and sCD14 correlated significantly across macaque and human samples. These findings suggest that SARS-CoV-2 infection results in GI barrier disruption that permits microbial translocation and a corresponding immune response. These findings could aid in developing interventions to improve COVID-19 patient outcomes.


Assuntos
Translocação Bacteriana , COVID-19 , Interleucina-6 , Receptores de Lipopolissacarídeos , Macaca mulatta , SARS-CoV-2 , Animais , COVID-19/imunologia , COVID-19/virologia , COVID-19/microbiologia , Humanos , SARS-CoV-2/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Interleucina-6/metabolismo , Masculino , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/virologia , Trato Gastrointestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Mucosa Intestinal/metabolismo , Feminino , Haptoglobinas/metabolismo , Linfócitos B/imunologia , Pessoa de Meia-Idade , Precursores de Proteínas
3.
J Intensive Care Med ; : 8850666241260605, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140386

RESUMO

Sickle cell disease (SCD) is associated with substantial morbidity and early mortality in afflicted adults. Cardiopulmonary complications that occur at increased frequency in SCD such as pulmonary embolism, pulmonary arterial hypertension, and acute chest syndrome can acutely worsen right ventricular function and lead to cardiogenic shock. Mechanical circulatory support including venoarterial extracorporeal membrane oxygenation (VA ECMO) is being increasingly utilized to treat hemodynamic collapse in various patient populations. However, a paucity of literature exists to guide the use of mechanical circulatory support in adults with SCD where disease-related sequela and unique hematologic aspects of this disorder may complicate extracorporeal therapy and must be understood. Here, we review the literature and describe three cases of adult patients with SCD who developed cardiogenic shock from acute decompensated right heart failure and were treated clinically with VA ECMO. Using an in vitro ECMO system, we investigate a potential increased risk of systemic fat emboli in patients with SCD who may be experiencing vaso-occlusive events with bone marrow involvement given the high-volume shunting of blood from venous to arterial systems with VA ECMO. The purpose of this study is to describe available extracorporeal life support experiences, review potential complications, and discuss the special considerations needed to further our understanding of the utility of VA ECMO in those with SCD.

4.
Crit Care ; 27(1): 440, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964311

RESUMO

BACKGROUND: The mortality benefit of VV-ECMO in ARDS has been extensively studied, but the impact on long-term functional outcomes of survivors is poorly defined. We aimed to assess the association between ECMO and functional outcomes in a contemporaneous cohort of survivors of ARDS. METHODS: Multicenter retrospective cohort study of ARDS survivors who presented to follow-up clinic. The primary outcome was FVC% predicted. Univariate and multivariate regression models were used to evaluate the impact of ECMO on the primary outcome. RESULTS: This study enrolled 110 survivors of ARDS, 34 of whom were managed using ECMO. The ECMO cohort was younger (35 [28, 50] vs. 51 [44, 61] years old, p < 0.01), less likely to have COVID-19 (58% vs. 96%, p < 0.01), more severely ill based on the Sequential Organ Failure Assessment (SOFA) score (7 [5, 9] vs. 4 [3, 6], p < 0.01), dynamic lung compliance (15 mL/cmH20 [11, 20] vs. 27 mL/cmH20 [23, 35], p < 0.01), oxygenation index (26 [22, 33] vs. 9 [6, 11], p < 0.01), and their need for rescue modes of ventilation. ECMO patients had significantly longer lengths of hospitalization (46 [27, 62] vs. 16 [12, 31] days, p < 0.01) ICU stay (29 [19, 43] vs. 10 [5, 17] days, p < 0.01), and duration of mechanical ventilation (24 [14, 42] vs. 10 [7, 17] days, p < 0.01). Functional outcomes were similar in ECMO and non-ECMO patients. ECMO did not predict changes in lung function when adjusting for age, SOFA, COVID-19 status, or length of hospitalization. CONCLUSIONS: There were no significant differences in the FVC% predicted, or other markers of pulmonary, neurocognitive, or psychiatric functional recovery outcomes, when comparing a contemporaneous clinic-based cohort of survivors of ARDS managed with ECMO to those without ECMO.


Assuntos
COVID-19 , Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Humanos , Pessoa de Meia-Idade , Resultado do Tratamento , Estudos Retrospectivos , COVID-19/terapia , Sobreviventes/psicologia
6.
Lancet ; 402(10399): 397-410, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37393920

RESUMO

BACKGROUND: A genetically engineered pig cardiac xenotransplantation was done on Jan 7, 2022, in a non-ambulatory male patient, aged 57 years, with end-stage heart failure, and on veno-arterial extracorporeal membrane oxygenation support, who was ineligible for an allograft. This report details our current understanding of factors important to the xenotransplantation outcome. METHODS: Physiological and biochemical parameters critical for the care of all heart transplant recipients were collected in extensive clinical monitoring in an intensive care unit. To ascertain the cause of xenograft dysfunction, we did extensive immunological and histopathological studies, including electron microscopy and quantification of porcine cytomegalovirus or porcine roseolovirus (PCMV/PRV) in the xenograft, recipient cells, and tissue by DNA PCR and RNA transcription. We performed intravenous immunoglobulin (IVIG) binding to donor cells and single-cell RNA sequencing of peripheral blood mononuclear cells. FINDINGS: After successful xenotransplantation, the graft functioned well on echocardiography and sustained cardiovascular and other organ systems functions until postoperative day 47 when diastolic heart failure occurred. At postoperative day 50, the endomyocardial biopsy revealed damaged capillaries with interstitial oedema, red cell extravasation, rare thrombotic microangiopathy, and complement deposition. Increased anti-pig xenoantibodies, mainly IgG, were detected after IVIG administration for hypogammaglobulinaemia and during the first plasma exchange. Endomyocardial biopsy on postoperative day 56 showed fibrotic changes consistent with progressive myocardial stiffness. Microbial cell-free DNA testing indicated increasing titres of PCMV/PRV cell-free DNA. Post-mortem single-cell RNA sequencing showed overlapping causes. INTERPRETATION: Hyperacute rejection was avoided. We identified potential mediators of the observed endothelial injury. First, widespread endothelial injury indicates antibody-mediated rejection. Second, IVIG bound strongly to donor endothelium, possibly causing immune activation. Finally, reactivation and replication of latent PCMV/PRV in the xenograft possibly initiated a damaging inflammatory response. The findings point to specific measures to improve xenotransplant outcomes in the future. FUNDING: The University of Maryland School of Medicine, and the University of Maryland Medical Center.


Assuntos
Ensaios de Uso Compassivo , Leucócitos Mononucleares , Humanos , Masculino , Transplante Heterólogo , Imunoglobulinas Intravenosas , Coração , Rejeição de Enxerto/prevenção & controle
7.
Pathogens ; 12(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513779

RESUMO

Bacterial and fungal co-infections are reported complications of coronavirus disease 2019 (COVID-19) in critically ill patients but may go unrecognized premortem due to diagnostic limitations. We compared the premortem with the postmortem detection of pulmonary co-infections in 55 fatal COVID-19 cases from March 2020 to March 2021. The concordance in the premortem versus the postmortem diagnoses and the pathogen identification were evaluated. Premortem pulmonary co-infections were extracted from medical charts while applying standard diagnostic definitions. Postmortem co-infection was defined by compatible lung histopathology with or without the detection of an organism in tissue by bacterial or fungal staining, or polymerase chain reaction (PCR) with broad-range bacterial and fungal primers. Pulmonary co-infection was detected premortem in significantly fewer cases (15/55, 27%) than were detected postmortem (36/55, 65%; p < 0.0001). Among cases in which co-infection was detected postmortem by histopathology, an organism was identified in 27/36 (75%) of cases. Pseudomonas, Enterobacterales, and Staphylococcus aureus were the most frequently identified bacteria both premortem and postmortem. Invasive pulmonary fungal infection was detected in five cases postmortem, but in no cases premortem. According to the univariate analyses, the patients with undiagnosed pulmonary co-infection had significantly shorter hospital (p = 0.0012) and intensive care unit (p = 0.0006) stays and significantly fewer extra-pulmonary infections (p = 0.0021). Bacterial and fungal pulmonary co-infection are under-recognized complications in critically ill patients with COVID-19.

8.
Res Pract Thromb Haemost ; 7(2): 100089, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37063753

RESUMO

Background: Urgent surgery requiring heparin exposure during cardiopulmonary bypass can be challenging in patients with acute heparin-induced thrombocytopenia (HIT). The use of treatments such as therapeutic plasma exchange (TPE) to remove HIT antibodies and intravenous immunoglobulin (IVIg) to antagonize HIT antibody-mediated platelet activation are increasingly reported in patients who undergo cardiac surgery. The optimal treatment approach to mitigate the risks of heparin administration in this situation is not known. Key Clinical Question: Can TPE coupled to IVIg allow for safe heparin exposure in patients with HIT? Clinical Approach: TPE and IVIg were used to enable heparin exposure for surgical placement of a left ventricular assist device in a patient with HIT. Serial patient samples were tested in antigen-based and functional HIT assays. Conclusion: Dissociation between antigen-based (enzyme-linked immunosorbent assay) and functional (serotonin release assay) testing was noted, and TPE coupled to IVIg was associated with an excellent clinical response.

10.
PLoS One ; 18(4): e0284020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023025

RESUMO

BACKGROUND: Although there have been many studies on antibody responses to SARS-CoV-2 in breast milk, very few have looked at the fate of these in the infant, and whether they are delivered to immunologically relevant sites in infants. METHODS: Mother/infant pairs (mothers who breast milk fed and who were SARS-CoV-2 vaccinated before or after delivery) were recruited for this cross-sectional study. Mother blood, mother breast milk, infant blood, infant nasal specimen, and infant stool was tested for IgA and IgG antibodies against SARS-CoV-2 spike trimer. RESULTS: Thirty-one mother/infant pairs were recruited. Breast milk fed infants acquired systemic anti-spike IgG antibodies only if their mothers were vaccinated antepartum (100% Antepartum; 0% Postpartum; P<0.0001). Breast milk fed infants acquired mucosal anti-spike IgG antibodies (in the nose) only if their mothers were vaccinated antepartum (89% Antepartum; 0% Postpartum; P<0.0001). None of the infants in either group had anti-spike IgA in the blood. Surprisingly, 33% of the infants whose mothers were vaccinated antepartum had high titer anti-spike IgA in the nose (33% Antepartum; 0% Postpartum; P = 0.03). Half-life of maternally transferred plasma IgG antibodies in the Antepartum infant cohort was ~70 days. CONCLUSION: Vaccination antepartum followed by breast milk feeding appears to be the best way to provide systemic and local anti-SARS-CoV-2 antibodies for infants. The presence of high titer SARS-CoV-2-specific IgA in the nose of infants points to the potential importance of breast milk feeding early in life for maternal transfer of mucosal IgA antibodies. Expectant mothers should consider becoming vaccinated antepartum and consider breast milk feeding for optimal transfer of systemic and mucosal antibodies to their infants.


Assuntos
COVID-19 , Leite Humano , Lactente , Feminino , Humanos , Estudos Transversais , COVID-19/prevenção & controle , SARS-CoV-2 , Aleitamento Materno , Anticorpos Antivirais , Imunoglobulina A , Imunoglobulina G
11.
Am J Pathol ; 193(11): 1809-1816, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963628

RESUMO

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Autopsia , RNA Viral/análise , Inflamação
13.
Am J Transplant ; 23(1): 101-107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695611

RESUMO

Although the risk of SARS-CoV-2 transmission through lung transplantation from acutely infected donors is high, the risks of virus transmission and long-term lung allograft outcomes are not as well described when using pulmonary organs from COVID-19-recovered donors. We describe successful lung transplantation for a COVID-19-related lung injury using lungs from a COVID-19-recovered donor who was retrospectively found to have detectable genomic SARS-CoV-2 RNA in the lung tissue by multiple highly sensitive assays. However, SARS-CoV-2 subgenomic RNA (sgRNA), a marker of viral replication, was not detectable in the donor respiratory tissues. One year after lung transplantation, the recipient has a good functional status, walking 1 mile several times per week without the need for supplemental oxygen and without any evidence of donor-derived SARS-CoV-2 transmission. Our findings highlight the limitations of current clinical laboratory diagnostic assays in detecting the persistence of SARS-CoV-2 RNA in the lung tissue. The persistence of SARS-CoV-2 RNA in the donor tissue did not appear to represent active viral replication via sgRNA testing and, most importantly, did not negatively impact the allograft outcome in the first year after lung transplantation. sgRNA is easily performed and may be a useful assay for assessing viral infectivity in organs from donors with a recent infection.


Assuntos
COVID-19 , Transplante de Pulmão , Humanos , SARS-CoV-2/genética , RNA Subgenômico , RNA Viral/genética , Estudos Retrospectivos , Aloenxertos
14.
Perfusion ; 38(7): 1519-1525, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35957550

RESUMO

INTRODUCTION: It remains unclear whether patients who will not accept allogeneic blood transfusion can be managed successfully with veno-arterial (V-A) extracorporeal membrane oxygenation (ECMO). The objective of our study was to determine what percentage of V-A ECMO patients were managed without allogeneic blood transfusion. METHODS: This was a retrospective, observational cohort study of patients with cardiogenic shock requiring V-A ECMO between January 2016 and January 2019. The primary outcome was avoidance of any allogeneic blood transfusion. RESULTS: Of the 206 patients included, 23 (11.2%) were managed without any allogeneic blood transfusion. Fourteen (60.9%) avoided allogeneic blood transfusion during their entire hospitalization. "No-transfusion" patients were younger, more commonly men, were less likely to have a prior diagnosis of hypertension or coronary artery disease, had higher baseline hemoglobin, had higher SAVE scores, and were less likely to have received aspirin before ECMO. No patients in the "no-transfusion" group had major bleeding compared to 35% of patients in the blood transfusion group (p < 0.001). In-hospital mortality was 17.4% for those who avoided blood transfusion and 41.5% for those who received blood transfusion (p = 0.04). ECMO duration was significantly shorter in patients who avoided blood transfusion compared to those who received blood transfusion (median 3.5 vs 7 days, p < 0.001). CONCLUSIONS: Select patients can be successfully managed on V-A ECMO without allogeneic blood transfusion. Jehovah's Witnesses and other patients with objections to allogeneic transfusion might be offered V-A ECMO if its anticipated duration is short (e.g. <7 days) and baseline hemoglobin concentration is high (e.g. ≥10 mg/dL).


Assuntos
Oxigenação por Membrana Extracorpórea , Transplante de Células-Tronco Hematopoéticas , Masculino , Humanos , Estudos de Coortes , Choque Cardiogênico , Estudos Retrospectivos , Transfusão de Sangue , Hemoglobinas
15.
Perfusion ; 38(1): 193-196, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320858

RESUMO

After orthotopic lung transplantation, hyperammonemia can be a rare complication secondary to infection by organisms that produce urease or inhibit the urea cycle. This can cause neurotoxicity, cerebral edema, and seizures. Ammonia is unique in that it has a large volume of distribution. However, it is also readily dialyzable given its small molecular weight. As such, removal of ammonia requires renal replacement modalities that can both rapidly remove ammonia from the plasma space and allow for continuous removal to prevent rebound accumulation from intracellular stores. Prevention of iatrogenic osmotic lowering in this setting is required to prevent worsening of cerebral edema. Herein, we describe use of sequential in-line renal replacement therapy using both intermittent hemodialysis and continuous venovenous hemofiltration within an extracorporeal membrane oxygenation circuit in conjunction with higher sodium dialysate and 7.5% hypertonic saline to achieve these treatment goals.


Assuntos
Edema Encefálico , Oxigenação por Membrana Extracorpórea , Hemofiltração , Hiperamonemia , Humanos , Hiperamonemia/etiologia , Hiperamonemia/terapia , Edema Encefálico/complicações , Edema Encefálico/terapia , Amônia , Oxigenação por Membrana Extracorpórea/efeitos adversos , Diálise Renal
16.
Nature ; 612(7941): 758-763, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517603

RESUMO

Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.


Assuntos
Autopsia , Encéfalo , COVID-19 , Especificidade de Órgãos , SARS-CoV-2 , Humanos , Encéfalo/virologia , COVID-19/virologia , RNA Viral/análise , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Replicação Viral , Fatores de Tempo , Sistema Respiratório/patologia , Sistema Respiratório/virologia
17.
Crit Care Med ; 50(9): e742-e743, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984077
18.
N Engl J Med ; 387(1): 35-44, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35731912

RESUMO

A 57-year-old man with nonischemic cardiomyopathy who was dependent on venoarterial extracorporeal membrane oxygenation (ECMO) and was not a candidate for standard therapeutics, including a traditional allograft, received a heart from a genetically modified pig source animal that had 10 individual gene edits. Immunosuppression was based on CD40 blockade. The patient was weaned from ECMO, and the xenograft functioned normally without apparent rejection. Sudden diastolic thickening and failure of the xenograft occurred on day 49 after transplantation, and life support was withdrawn on day 60. On autopsy, the xenograft was found to be edematous, having nearly doubled in weight. Histologic examination revealed scattered myocyte necrosis, interstitial edema, and red-cell extravasation, without evidence of microvascular thrombosis - findings that were not consistent with typical rejection. Studies are under way to identify the mechanisms responsible for these changes. (Funded by the University of Maryland Medical Center and School of Medicine.).


Assuntos
Animais Geneticamente Modificados , Transplante de Coração , Xenoenxertos , Transplante Heterólogo , Animais , Animais Geneticamente Modificados/genética , Oxigenação por Membrana Extracorpórea , Coração , Transplante de Coração/métodos , Humanos , Terapia de Imunossupressão , Suínos , Transplante Heterólogo/métodos
20.
ATS Sch ; 3(1): 99-111, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35634005

RESUMO

Background: Recent advances in device technology and image analysis software used to assess the sublingual microcirculation have expanded clinicians' understanding of hemodynamics beyond assessments of blood pressure and end-organ function to provide unique insight into blood flow at the tissue level. Similarly, significant advances in virtual education and telemedicine have transpired recently, especially during the coronavirus disease (COVID-19) pandemic. However, the training of clinicians to acquire microcirculation images continues to rely on in-person instruction, which can be limited by available local expertise and resources, as well as geographic access to instructors. Objective: Our project aimed to test the feasibility of deploying an online curriculum in combination with tele-guidance versus an in-person guided approach to instruct novices to understand basic principle of microcirculatory function and to acquire sublingual microcirculatory images. Methods: After participating in brief didactics, 14 participants were divided into two groups to acquire microcirculatory images on a healthy volunteer. Each participant either 1) obtained images after an in-person demonstration or 2) obtained images with tele-guidance by using FaceTime technology. We recorded individual microcirculation quality scores, necessary time to acquire each image, percentage of correct theoretical questions on assessments, participant satisfaction with the curriculum, and participants' degree of confidence with image acquisition. Results: Participants' image quality scores (14.7 vs. 23.6, P = 0.3) and time to acquire images (191.2 vs. 199.4 s) did not significantly differ. In addition, participants' scores on theoretical knowledge assessments improved over the course of training (19.0% vs. 54.8%, P < 0.05). Conclusion: This feasibility study provides a novel framework for how to successfully deploy asynchronous education and telemedicine to direct novices to acquire sublingual microcirculatory images. Using technological advances to teach microcirculation may enhance wide-scale adoption of a promising clinical monitoring tool for critically ill patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA