Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Parasitol Parasites Wildl ; 23: 100908, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38405673

RESUMO

In the fall of 2021, California Department of Fish and Wildlife reported larval and adult California giant salamanders (Dicamptodon ensatus Eschscholtz, 1833) with skin lesions at multiple creeks in Santa Clara and Santa Cruz Counties, California, USA. Field signs in both stages included rough, lumpy textured skin, and larvae with tails that were disproportionately long, flat, wavy, and flaccid. Presence of large-bodied larvae suggested delayed metamorphosis, with some larvae having cloudy eyes and suspected blindness. To determine the cause of the disease, three first-of-the-year salamanders from one location were collected, euthanized with 20% benzocaine, and submitted for necropsy to the U.S. Geological Survey, National Wildlife Health Center. Upon gross examination, all salamanders were emaciated with no internal fat stores, and had multiple pinpoint to 1.5-mm diameter raised nodules in the skin over the body, including the head, gills, dorsum, ventrum, all four limbs, and the tail; one also had nodules in the oral cavity and tongue. Histologically all salamanders had multiple encysted metacercariae in the dermis, subcutis, and skeletal muscles of the head, body, and tail that were often associated with granulomatous and granulocytic inflammation and edema. A small number of encysted metacercariae or empty cysts were present in the gills with minimal inflammation, and rarely in the kidney with no associated inflammation. Morphology of live metacercariae (Trematoda: Heterophyiidae), and sequencing of the 28S rRNA gene identified a species of Euryhelmis (Poche, 1926). Artificial digestion of a 1.65 g, decapitated, eviscerated carcass yielded 773 metacercariae, all of similar size and morphology as the live specimens. Based on these findings, the poor body condition of these salamanders was concluded to be due to heavy parasite burden. Environmental factors such as drought, increased temperature, and overcrowded conditions may be exacerbating parasite infections in these populations of salamander.

2.
Front Microbiol ; 14: 1302586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125577

RESUMO

The emergence of ophidiomycosis (or snake fungal disease) in snakes has prompted increased awareness of the potential effects of fungal infections on wild reptile populations. Yet, aside from Ophidiomyces ophidiicola, little is known about other mycoses affecting wild reptiles. The closely related genus Paranannizziopsis has been associated with dermatomycosis in snakes and tuataras in captive collections, and P. australasiensis was recently identified as the cause of skin infections in non-native wild panther chameleons (Furcifer pardalis) in Florida, USA. Here we describe five cases of Paranannizziopsis spp. associated with skin lesions in wild snakes in North America and one additional case from a captive snake from Connecticut, USA. In addition to demonstrating that wild Nearctic snakes can serve as a host for these fungi, we also provide evidence that the genus Paranannizziopsis is widespread in wild snakes, with cases being identified in Louisiana (USA), Minnesota (USA), Virginia (USA), and British Columbia (Canada). Phylogenetic analyses conducted on multiple loci of the fungal strains we isolated identified P. australasiensis in Louisiana and Virginia; the remaining strains from Minnesota and British Columbia did not cluster with any of the described species of Paranannizziopsis, although the strains from British Columbia appear to represent a single lineage. Finally, we designed a pan-Paranannizziopsis real-time PCR assay targeting the internal transcribed spacer region 2. This assay successfully detected DNA of all described species of Paranannizziopsis and the two potentially novel taxa isolated in this study and did not cross-react with closely related fungi or other fungi commonly found on the skin of snakes. The assay was 100% sensitive and specific when screening clinical (skin tissue or skin swab) samples, although full determination of the assay's performance will require additional follow up due to the small number of clinical samples (n = 14 from 11 snakes) available for testing in our study. Nonetheless, the PCR assay can provide an important tool in further investigating the prevalence, distribution, and host range of Paranannizziopsis spp. and facilitate more rapid diagnosis of Paranannizziopsis spp. infections that are otherwise difficult to differentiate from other dermatomycoses.

3.
Environ Sci Technol ; 57(45): 17511-17521, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902062

RESUMO

Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats including contaminants. While the biphasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used nonlethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017-2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether the concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ≥ 0.67), whereas total Hg in sediment was not (R2 ≤ 0.04). Our study, the largest broad-scale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for nonlethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify the potential threats of MeHg to amphibians.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Odonatos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Mercúrio/análise , Anfíbios , Monitoramento Ambiental
4.
J Wildl Dis ; 59(4): 557-568, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486870

RESUMO

Introduced fungal pathogens have caused declines and extinctions of naïve wildlife populations across vertebrate classes. Consequences of introduced pathogens to hosts with small ranges might be especially severe because of limited redundancy to rescue populations and lower abundance that may limit the resilience of populations to perturbations like disease introduction. As a complement to biosecurity measures to prevent the spread of pathogens, surveillance programs may enable early detection of pathogens, when management actions to limit the effects of pathogens on naïve hosts might be most beneficial. We analyzed surveillance data for the endangered and narrowly endemic Dixie Valley toad (Anaxyrus [= Bufo] williamsi) from two time periods (2011-2014 and 2019-2021) to estimate the minimum detectable prevalence of the amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd). We assessed if detection efficiency could be improved by using samples from both Dixie Valley toads and co-occurring introduced American bullfrogs (Lithobates catesbeianus) and literature-derived surveillance weights. We further evaluated a weighted surveillance design to increase the efficiency of surveillance efforts for Bd within the toad's small (<6 km2) range. We found that monitoring adult and larval American bullfrogs would probably detect Bd more efficiently than monitoring Dixie Valley toads alone. Given that no Bd was detected, minimum detectable prevalence of Bd was <3% in 2011-2014, and <5% (Dixie Valley toads only) and <10% (American bullfrogs only) in 2019-2021. Optimal management for Bd depends on the mechanisms underlying its apparent absence from the range of Dixie Valley toads, but a balanced surveillance scheme that includes sampling American bullfrogs to increase the likelihood of detecting Bd, and adult Dixie Valley toads to ensure broad spatial coverage where American bullfrogs do not occur, would probably result in efficient surveillance, which might permit timely management of Bd if it is detected.


Assuntos
Bufonidae , Quitridiomicetos , Animais , Batrachochytrium , Temperatura Alta , Animais Selvagens , Rana catesbeiana
5.
J Wildl Dis ; 59(1): 167-171, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584343

RESUMO

The protistan genus Epistylis contains freshwater colonial species that attach to aquatic organisms in an epibiotic or parasitic relationship. They are known to attach to the epidermis and shells of aquatic turtles, but have not been reported to cause heavy infestations or morbidity in turtles. We documented heavy infestations of Epistylis spp. in several populations of Sonoran mud turtles (Kinosternon sonoriense) inhabiting livestock ponds in Arizona, USA, and rough-footed mud turtles (Kinosternon hirtipes) from livestock ponds in Texas, USA, over the course of several years. Severe Epistylis spp. infestations on mud turtles appeared to alter diving and swimming behavior when compared to uninfested conspecifics. Infestations were cleared in captivity using tap water or a 10% salt solution, and the turtles had no permanent damage to their shell or epidermis upon clearing. While several of the mud turtles we observed had poor body condition, it is possible that the severe infestations we observed were caused by a comorbidity associated with a pathogen, parasite, or poor habitat quality that made the turtles more susceptible to the Epistylis spp. infestation. Further research on causes for these severe infestations are warranted because they contribute to changes in behavior of the heavily infested turtles and may contribute to morbidity in Kinosternon spp. when mud turtles inhabit extremely warm, shallow, eutrophic aquatic habitats, such as livestock ponds.


Assuntos
Tartarugas , Animais , Tartarugas/parasitologia , Água Doce/parasitologia , Arizona , Texas
6.
PLoS Biol ; 20(6): e3001676, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737674

RESUMO

Snake fungal disease (SFD; ophidiomycosis), caused by the pathogen Ophidiomyces ophiodiicola (Oo), has been documented in wild snakes in North America and Eurasia, and is considered an emerging disease in the eastern United States of America. However, a lack of historical disease data has made it challenging to determine whether Oo is a recent arrival to the USA or whether SFD emergence is due to other factors. Here, we examined the genomes of 82 Oo strains to determine the pathogen's history in the eastern USA. Oo strains from the USA formed a clade (Clade II) distinct from European strains (Clade I), and molecular dating indicated that these clades diverged too recently (approximately 2,000 years ago) for transcontinental dispersal of Oo to have occurred via natural snake movements across Beringia. A lack of nonrecombinant intermediates between clonal lineages in Clade II indicates that Oo has actually been introduced multiple times to North America from an unsampled source population, and molecular dating indicates that several of these introductions occurred within the last few hundred years. Molecular dating also indicated that the most common Clade II clonal lineages have expanded recently in the USA, with time of most recent common ancestor mean estimates ranging from 1985 to 2007 CE. The presence of Clade II in captive snakes worldwide demonstrates a potential mechanism of introduction and highlights that additional incursions are likely unless action is taken to reduce the risk of pathogen translocation and spillover into wild snake populations.


Assuntos
Dermatomicoses , Onygenales , Animais , Dermatomicoses/epidemiologia , Dermatomicoses/microbiologia , Genética Populacional , Serpentes/genética , Estados Unidos
7.
Influenza Other Respir Viruses ; 15(6): 767-777, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323380

RESUMO

BACKGROUND: The 2015 highly pathogenic avian influenza virus (HPAIV) H5N2 clade 2.3.4.4 outbreak in upper midwestern U.S. poultry operations was not detected in wild birds to any great degree during the outbreak, despite wild waterfowl being implicated in the introduction, reassortment, and movement of the virus into North America from Asia. This outbreak led to the demise of over 50 million domestic birds and occurred mainly during the northward spring migration of adult avian populations. OBJECTIVES: There have been no experimental examinations of the pathogenesis, transmission, and population impacts of this virus in adult wild waterfowl with varying exposure histories-the most relevant age class. METHODS: We captured, housed, and challenged adult wild mallards (Anas platyrhynchos) with HPAIV H5N2 clade 2.3.4.4 and measured viral infection, viral excretion, and transmission to other mallards. RESULTS: All inoculated birds became infected and excreted moderate amounts of virus, primarily orally, for up to 14 days. Cohoused, uninoculated birds also all became infected. Serological status had no effect on susceptibility. There were no obvious clinical signs of disease, and all birds survived to the end of the study (14 days). CONCLUSIONS: Based on these results, adult mallards are viable hosts of HPAIV H5N2 regardless of prior exposure history and are capable of transporting the virus over short and long distances. These findings have implications for surveillance efforts. The capture and sampling of wild waterfowl in the spring, when most surveillance programs are not operating, are important to consider in the design of future HPAIV surveillance programs.


Assuntos
Vírus da Influenza A Subtipo H5N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Surtos de Doenças , Patos , Humanos , Vírus da Influenza A Subtipo H5N2/genética , Influenza Aviária/epidemiologia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia
8.
Int J Parasitol Parasites Wildl ; 16: 255-261, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36120602

RESUMO

In early September 2019, a morbidity and mortality event affecting California tiger salamanders (Ambystoma californiense) and Santa Cruz long-toed salamanders (Ambystoma macrodactylum croceum) in late stages of metamorphosis was reported at a National Wildlife Refuge in Santa Cruz County, California, U.S.A. During the postmortem disease investigation, severe integumentary metacercarial (Class: Trematoda) infection, associated with widespread skin lesions, was observed. Planorbid snails collected from the ponds of the refuge within seven days of the mortality event were infected with Ribeiroia ondatrae, a digenetic trematode that can cause malformation and death in some amphibians. We suggest sustained seasonal high-water levels due to active habitat management along with several years of increased rainfall led to increased bird visitation, increased over-wintering of snails, and prolonged salamander metamorphosis, resulting in a confluence of conditions and cascading of host-parasite dynamics to create a hyper-parasitized state.

9.
Sci Rep ; 10(1): 13012, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747670

RESUMO

The salamander chytrid fungus (Batrachochytrium salamandrivorans [Bsal]) is causing massive mortality of salamanders in Europe. The potential for spread via international trade into North America and the high diversity of salamanders has catalyzed concern about Bsal in the U.S. Surveillance programs for invading pathogens must initially meet challenges that include low rates of occurrence on the landscape, low prevalence at a site, and imperfect detection of the diagnostic tests. We implemented a large-scale survey to determine if Bsal was present in North America designed to target taxa and localities where Bsal was determined highest risk to be present based on species susceptibility and geography. Our analysis included a Bayesian model to estimate the probability of occurrence of Bsal given our prior knowledge of the occurrence and prevalence of the pathogen. We failed to detect Bsal in any of 11,189 samples from 594 sites in 223 counties within 35 U.S. states and one site in Mexico. Our modeling indicates that Bsal is highly unlikely to occur within wild amphibians in the U.S. and suggests that the best proactive response is to continue mitigation efforts against the introduction and establishment of the disease and to develop plans to reduce impacts should Bsal establish.


Assuntos
Anfíbios/microbiologia , Batrachochytrium/isolamento & purificação , Anfíbios/classificação , Animais , Batrachochytrium/genética , Teorema de Bayes , DNA Fúngico/genética , América do Norte , Reação em Cadeia da Polimerase , Especificidade da Espécie
10.
Biol Rev Camb Philos Soc ; 95(2): 393-408, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31750623

RESUMO

Prions are misfolded infectious proteins responsible for a group of fatal neurodegenerative diseases termed transmissible spongiform encephalopathy or prion diseases. Chronic Wasting Disease (CWD) is the prion disease with the highest spillover potential, affecting at least seven Cervidae (deer) species. The zoonotic potential of CWD is inconclusive and cannot be ruled out. A risk of infection for other domestic and wildlife species is also plausible. Here, we review the current status of the knowledge with respect to CWD ecology in wildlife. Our current understanding of the geographic distribution of CWD lacks spatial and temporal detail, does not consider the biogeography of infectious diseases, and is largely biased by sampling based on hunters' cooperation and funding available for each region. Limitations of the methods used for data collection suggest that the extent and prevalence of CWD in wildlife is underestimated. If the zoonotic potential of CWD is confirmed in the short term, as suggested by recent results obtained in experimental animal models, there will be limited accurate epidemiological data to inform public health. Research gaps in CWD prion ecology include the need to identify specific biological characteristics of potential CWD reservoir species that better explain susceptibility to spillover, landscape and climate configurations that are suitable for CWD transmission, and the magnitude of sampling bias in our current understanding of CWD distribution and risk. Addressing these research gaps will help anticipate novel areas and species where CWD spillover is expected, which will inform control strategies. From an ecological perspective, control strategies could include assessing restoration of natural predators of CWD reservoirs, ultrasensitive CWD detection in biotic and abiotic reservoirs, and deer density and landscape modification to reduce CWD spread and prevalence.


Assuntos
Cervos/genética , Doença de Emaciação Crônica/epidemiologia , Animais , Animais Selvagens , Predisposição Genética para Doença , Humanos , Príons/metabolismo , Doença de Emaciação Crônica/patologia , Doença de Emaciação Crônica/transmissão , Zoonoses
11.
Ecol Appl ; 30(2): e02040, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31755623

RESUMO

Waterfowl and shorebirds are the primary hosts of influenza A virus (IAV), however, in most surveillance efforts, large populations of birds are not routinely examined; specifically marine ducks and other birds that reside predominately on or near the ocean. We conducted a long-term study sampling sea ducks and gulls in coastal Maine for IAV and found a virus prevalence (1.7%) much lower than is typically found in freshwater duck populations. We found wide year-to-year variation in virus detection in sea ducks and that the ocean water temperature was an important factor affecting IAV prevalence. In particular, the ocean temperature that occurred 11 d prior to collecting virus positive samples was important while water temperature measured concurrently with host sampling had no explanatory power for viral detection. We also experimentally showed that IAV is relatively unstable in sea water at temperatures typically found during our sampling. This represents the first report of virus prevalence and actual environmental data that help explain the variation in marine IAV transmission dynamics.


Assuntos
Vírus da Influenza A , Influenza Aviária/epidemiologia , Animais , Aves , Patos , Maine , Oceanos e Mares , Prevalência , Temperatura
13.
Prev Vet Med ; 162: 56-66, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30621899

RESUMO

Mathematical models are key tools for the development of surveillance, preparedness and response plans for the potential events of emerging and introduced foreign animal diseases. Creating these types of plans requires data; when data are incomplete, mathematical models can help fill in missing information, provided they are informed by the data that are available. In the United States, the most complete national-scale data available on cattle shipments are based on Interstate Certificates of Veterinary Inspection, which track the shipment of cattle between states; data on intrastate cattle shipments are lacking. Here we develop four new datasets on intrastate cattle shipments in the U.S., including an expert elicitation survey covering 19 states and territories and three state-level brand inspection data sets. The expert elicitation survey provides estimates on the proportion of shipments that travel interstate over multiple regions of the U.S. These survey data also identify differences in shipment patterns between regions, cattle commodity types, and sectors of the cattle industry. These survey data cover more states than any other source of intrastate data; however, one limitation of these data is the small number of participating experts in many of the states, only seven of the 19 responding states and territories had a group size of three or larger. The brand data sets include origin and destination information for both intra- and interstate shipments. These data, therefore, also provide detailed information on the proportion of interstate shipments in three Western states, including the temporal and geographic variation in shipments. Because the survey and brand data overlap in the Western U.S., they can be compared. We find that in the Western U.S. the expert estimates of the overall proportion of cattle shipments matched the brand data well. However, the experts estimated that there would be larger differences in beef and dairy shipments than the brand data show. This suggests the cattle industries in the West may be sending similar proportions of commodity specific cattle shipments over state lines. We additionally used the expert survey data to explore how differences in the proportion of interstate shipments can change predictions about cattle shipment patterns using the example of model-guided suggestions for targeted surveillance in Texas. Together these four data sets are the most extensive and geographically comprehensive information to date on intrastate cattle shipments. Additionally, our analyses on predicted shipment patterns suggest that assumptions about intrastate shipments could have consequences for targeted surveillance.


Assuntos
Bovinos , Meios de Transporte/estatística & dados numéricos , Animais , Modelos Teóricos , Estações do Ano , Inquéritos e Questionários , Estados Unidos
14.
Vet Pathol ; 56(1): 133-142, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236039

RESUMO

Severe Perkinsea infection (SPI) is an emerging disease of frogs responsible for mass mortalities of tadpoles across the United States. It is caused by protozoa belonging to the phylum Perkinsozoa that form a distinct group referred to as the Pathogenic Perkinsea Clade of frogs. In this work, we provide detailed description of gross and histologic lesions from 178 naturally infected tadpoles, including 10 species from 22 mortality events and 6 amphibian health monitoring studies from diverse geographic areas. On external examination, we observed abdominal distension (10, 5.6%), cutaneous erythema and petechia (3, 1.7%), subcutaneous edema (3, 1.7%), and areas of white skin discoloration (3, 1.7%). On macroscopic examination of internal organs, we found hepatomegaly (68, 38.2%), splenomegaly (51, 28.7%), nephromegaly (47, 26.4%), ascites (15, 8.4%), segmental irregular thickening and white discoloration of the intestine (8, 4.5%), pancreatomegaly (4, 2.2%), and pancreatic petechia (1, 0.6%). Histologically, over 60% of the liver (148/165, 89.7%), kidney (113/147, 76.9%), spleen (96/97, 99%), and pancreas (46/68, 67.6%) were invaded by myriad intracellular and extracellular Perkinsea hypnospore-like and trophozoite-like organisms. Numerous other tissues were affected to a lesser extent. Mild histiocytic inflammation with fewer lymphocytes or eosinophils was commonly observed in areas of infection that were not obscured by lympho-granulocytic hematopoietic tissue. In light of these observations, we suggest a logical pathogenesis sequence. Finally, we propose a "case definition" for SPI to promote standardized communication of results and prevent misdiagnosis with epidemiological and pathologically overlapping diseases such as ranavirosis.


Assuntos
Alveolados/patogenicidade , Infecções Protozoárias em Animais/patologia , Ranidae/parasitologia , Animais , Larva/parasitologia , Estudos Retrospectivos
15.
Evol Appl ; 11(4): 547-557, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29636805

RESUMO

Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

16.
Prev Vet Med ; 150: 52-59, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29406084

RESUMO

Risk-based sampling is an essential component of livestock health surveillance because it targets resources towards sub-populations with a higher risk of infection. Risk-based surveillance in U.S. livestock is limited because the locations of high-risk herds are often unknown and data to identify high-risk herds based on shipments are often unavailable. In this study, we use a novel, data-driven network model for the shipments of cattle in the U.S. (the U.S. Animal Movement Model, USAMM) to provide surveillance suggestions for cattle imported into the U.S. from Mexico. We describe the volume and locations where cattle are imported and analyze their predicted shipment patterns to identify counties that are most likely to receive shipments of imported cattle. Our results suggest that most imported cattle are sent to relatively few counties. Surveillance at 10 counties is predicted to sample 22-34% of imported cattle while surveillance at 50 counties is predicted to sample 43%-61% of imported cattle. These findings are based on the assumption that USAMM accurately describes the shipments of imported cattle because their shipments are not tracked separately from the remainder of the U.S. herd. However, we analyze two additional datasets - Interstate Certificates of Veterinary Inspection and brand inspection data - to ensure that the characteristics of potential post-import shipments do not change on an annual scale and are not dependent on the dataset informing our analyses. Overall, these results highlight the utility of USAMM to inform targeted surveillance strategies when complete shipment information is unavailable.


Assuntos
Doenças dos Bovinos/epidemiologia , Monitoramento Epidemiológico/veterinária , Meios de Transporte , Animais , Bovinos , Doenças dos Bovinos/etiologia , México , Modelos Teóricos , Medição de Risco , Estados Unidos/epidemiologia
17.
J Wildl Dis ; 54(2): 248-260, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29369723

RESUMO

In 2013, a mortality event of nonnative, feral Rosy-faced Lovebirds ( Agapornis roseicollis) in residential backyards in Maricopa County, Arizona, US was attributed to infection with Chlamydia psittaci. In June 2014, additional mortality occurred in the same region. Accordingly, in August 2014 we sampled live lovebirds and sympatric bird species visiting backyard bird feeders to determine the prevalence of DNA and the seroprevalence of antibodies to C. psittaci using real-time PCR-based testing and elementary body agglutination, respectively. Chlamydia psittaci DNA was present in conjunctival-choanal or cloacal swabs in 93% (43/46) of lovebirds and 10% (14/142) of sympatric birds. Antibodies to C. psittaci were detected in 76% (31/41) of lovebirds and 7% (7/102) of sympatric birds. Among the sympatric birds, Rock Doves ( Columba livia) had the highest prevalence of C. psittaci DNA (75%; 6/8) and seroprevalence (25%; 2/8). Psittacine circovirus 1 DNA was also identified, using real-time PCR-based testing, from the same swab samples in 69% (11/16) of species sampled, with a prevalence of 80% (37/46) in lovebirds and 27% (38/142) in sympatric species. The presence of either Rosy-faced Lovebirds or Rock Doves at residential bird feeders may be cause for concern for epizootic and zoonotic transmission of C. psittaci in this region.


Assuntos
Agapornis , Doenças das Aves/microbiologia , Chlamydophila psittaci/isolamento & purificação , Columbidae , Passeriformes , Psitacose/veterinária , Agapornis/microbiologia , Animais , Animais Selvagens , Arizona/epidemiologia , Doenças das Aves/epidemiologia , Doenças das Aves/mortalidade , Columbidae/microbiologia , Passeriformes/microbiologia , Psitacose/epidemiologia , Psitacose/microbiologia , Psitacose/mortalidade
18.
J Wildl Dis ; 54(1): 189-192, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29087775

RESUMO

: We observed Sanderlings ( Calidris alba) with facial growths in coastal Louisiana, US during summer of 2016. Severe lesions were associated with lethargy and lack of a flight response. We determined that the skin growth etiology was a bacterium of the genus Dermatophilus, rarely reported infecting birds. Sanderlings also exhibited severe amyloidosis.


Assuntos
Actinobacteria/isolamento & purificação , Amiloidose/veterinária , Doenças das Aves/microbiologia , Charadriiformes , Infecções por Bactérias Gram-Positivas/veterinária , Amiloidose/epidemiologia , Amiloidose/microbiologia , Animais , Doenças das Aves/epidemiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Louisiana/epidemiologia
19.
Sci Rep ; 7(1): 10288, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860470

RESUMO

Emerging infectious diseases such as chytridiomycosis and ranavirus infections are important contributors to the worldwide decline of amphibian populations. We reviewed data on 247 anuran mortality events in 43 States of the United States from 1999-2015. Our findings suggest that a severe infectious disease of tadpoles caused by a protist belonging to the phylum Perkinsea might represent the third most common infectious disease of anurans after ranavirus infections and chytridiomycosis. Severe Perkinsea infections (SPI) were systemic and led to multiorganic failure and death. The SPI mortality events affected numerous anuran species and occurred over a broad geographic area, from boreal to subtropical habitats. Livers from all PCR-tested SPI-tadpoles (n = 19) were positive for the Novel Alveolate Group 01 (NAG01) of Perkinsea, while only 2.5% histologically normal tadpole livers tested positive (2/81), suggesting that subclinical infections are uncommon. Phylogenetic analysis demonstrated that SPI is associated with a phylogenetically distinct clade of NAG01 Perkinsea. These data suggest that this virulent Perkinsea clade is an important pathogen of frogs in the United States. Given its association with mortality events and tendency to be overlooked, the potential role of this emerging pathogen in amphibian declines on a broad geographic scale warrants further investigation.


Assuntos
Alveolados/fisiologia , Anuros/parasitologia , Infecções Protozoárias em Animais/mortalidade , Infecções Protozoárias em Animais/parasitologia , Alveolados/classificação , Animais , Anuros/genética , Geografia , Larva , Micoses/diagnóstico , Micoses/microbiologia , Filogenia , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/epidemiologia , Ranavirus/fisiologia , Estados Unidos/epidemiologia
20.
Sci Rep ; 7(1): 7821, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798293

RESUMO

Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.


Assuntos
Doenças Transmissíveis Emergentes/transmissão , Doenças dos Suínos/microbiologia , Doenças dos Suínos/parasitologia , Zoonoses/transmissão , Animais , Animais Domésticos , Animais Selvagens/microbiologia , Animais Selvagens/parasitologia , Humanos , Gado , América do Norte/epidemiologia , Aves Domésticas , Saúde Pública , Gestão de Riscos , Sus scrofa , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA