Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 512(7515): 406-8, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164750

RESUMO

A type Ia supernova is thought to be a thermonuclear explosion of either a single carbon-oxygen white dwarf or a pair of merging white dwarfs. The explosion fuses a large amount of radioactive (56)Ni (refs 1-3). After the explosion, the decay chain from (56)Ni to (56)Co to (56)Fe generates γ-ray photons, which are reprocessed in the expanding ejecta and give rise to powerful optical emission. Here we report the detection of (56)Co lines at energies of 847 and 1,238 kiloelectronvolts and a γ-ray continuum in the 200-400 kiloelectronvolt band from the type Ia supernova 2014J in the nearby galaxy M82. The line fluxes suggest that about 0.6 ± 0.1 solar masses of radioactive (56)Ni were synthesized during the explosion. The line broadening gives a characteristic mass-weighted ejecta expansion velocity of 10,000 ± 3,000 kilometres per second. The observed γ-ray properties are in broad agreement with the canonical model of an explosion of a white dwarf just massive enough to be unstable to gravitational collapse, but do not exclude merger scenarios that fuse comparable amounts of (56)Ni.

2.
Nature ; 490(7420): 373-5, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23075986

RESUMO

It is assumed that the radioactive decay of (44)Ti powers the infrared, optical and ultraviolet emission of supernova remnants after the complete decay of (56)Co and (57)Co (the isotopes that dominated the energy balance during the first three to four years after the explosion) until the beginning of active interaction of the ejecta with the surrounding matter. Simulations show that the initial mass of (44)Ti synthesized in core-collapse supernovae is (0.02-2.5) × 10(-4) solar masses (M circled dot). Hard X-rays and γ-rays from the decay of this (44)Ti have been unambiguously observed from Cassiopeia A only, leading to the suggestion that values of the initial mass of (44)Ti near the upper bound of the predictions occur only in exceptional cases. For the remnant of supernova 1987A, an upper limit to the initial mass of (44)Ti of <10(-3) M circled dot has been obtained from direct X-ray observations, and an estimate of (1-2) × 10(-4) M circled dot has been made from infrared light curves and ultraviolet spectra by complex and model-dependent computations. Here we report observations of hard X-rays from the remnant of supernova 1987A in the narrow band containing two direct-escape lines of (44)Ti at 67.9 and 78.4 keV. The measured line fluxes imply that this decay provided sufficient energy to power the remnant at late times. We estimate that the initial mass of (44)Ti was (3.1 ± 0.8) × 10(-4), which is near the upper bound of theoretical predictions.

3.
Faraday Discuss ; (118): 19-32; discussion 43-62, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11605265

RESUMO

Clusters of para-hydrogen (pH2) and ortho-deuterium (oD2) have been assembled around an OCS chromophore molecule inside He droplets in a molecular beam and studied via IR diode laser depletion spectroscopy (nu approximately 2060 cm-1). The superfluid 4He droplets provide a gentle host ensuring a constant low temperature of either T = 0.38 K for 4He droplets or T = 0.15 K for both the pure 3He and mixed 4He-3He droplets. The spectra show well resolved rotational structure of the vibrational bands for each attached hydrogen molecule in the range n = 1-8. With only one (n = 1) attached pH2, HD or an oD2 molecule the best fit rotational constants were used to determine the structure of the complex, which was found to be in surprisingly good agreement with quantum chemical calculations for the free complex. With n = 5 and 6 the Q-branch disappears for the pH2 clusters but not for the oD2 clusters which is consistent with a donut model. The moments of inertia of the pH2 and the oD2 complexes are explained by a new model in which each of the 18 attached helium atoms in a shell surrounding the OCS molecule are assigned a mass of 0.55, while each attached H2 and D2 molecule has an effective mass of about 10 and 12 u, respectively.

4.
Science ; 289(5484): 1532-1535, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10968785

RESUMO

A linear carbonyl sulfide (OCS) molecule surrounded by 14 to 16 para-hydrogen (pH(2)) molecules, or similar numbers of ortho-deuterium (oD(2)) molecules, within large helium-4 ((4)He) droplets and inside mixed (4)He/(3)He droplets was investigated by infrared spectroscopy. In the pure (4)He droplets (0.38 kelvin), both systems exhibited spectral features that indicate the excitation of angular momentum around the OCS axis. In the colder (4)He/(3)He droplets (0.15 kelvin), these features remained in the oD(2) cluster spectra but disappeared in the pH(2) spectra, indicating that the angular momentum is no longer excited. These results are consistent with the onset of superfluidity, thereby providing the first evidence for superfluidity in a liquid other than helium.

6.
Science ; 279(5359): 2083-6, 1998 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-9516103

RESUMO

The infrared spectrum of single oxygen carbon sulfide (OCS) molecules was measured inside large superfluid pure helium-4 droplets and nonsuperfluid pure helium-3 droplets, both consisting of about 10(4) atoms. In the helium-4 droplets, sharp rotational lines were observed, whereas in helium-3 only a broad peak was found. This difference is interpreted as evidence that the narrow rotational lines, which imply free rotations, are a microscopic manifestation of superfluidity. Upon addition of 60 helium-4 atoms to the pure helium-3 droplets, the same sharp rotational lines were found; it appears that 60 is the minimum number needed for superfluidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA