Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 144: 105231, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779519

RESUMO

BACKGROUND: The BDNF Val66Met single nucleotide polymorphism has been implicated in stress sensitivity and Post-Traumatic Stress Disorder (PTSD) risk. We previously reported that chronic young-adult stress hormone treatment enhanced fear memory in adult BDNFVal66Met mice with the Met/Met genotype. This study aimed to extend this work to fear extinction learning, spontaneous recovery of fear, and neurobiological correlates in the amygdala. METHODS: Male and female Val/Val and Met/Met mice received corticosterone in their drinking water during late adolescence to model chronic stress. Following a 2-week recovery period, the mice underwent fear conditioning and extinction training. Immunofluorescent labelling was used to assess density of three interneuron subtypes; somatostatin, parvalbumin and calretinin, within distinct amygdala nuclei. RESULTS: No significant effects of genotype, treatment or sex were found for fear learning. However, adolescent CORT treatment selectively abolished fear extinction of female Met/Met mice. No effect of genotype, sex, or treatment was observed for spontaneous recovery of fear. Significant main effects of genotype and CORT emerged for somatostatin and calretinin cell density, again in females only, further supporting sex-specific effects of the Met/Met genotype and chronic CORT exposure. CONCLUSION: BDNF Val66Met genotype interacts with chronic adolescent stress hormone exposure to abolish fear extinction in female Met/Met mice in adulthood. This effect was associated with female-specific interneuron dysfunction induced by either genotype or stress hormone exposure, depending on the interneuron subtype. These data provide biological insight into the role of BDNF in sex differences in sensitivity to stress and vulnerability to stress-related disorders in adulthood.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Medo , Tonsila do Cerebelo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Calbindina 2/genética , Calbindina 2/metabolismo , Extinção Psicológica , Feminino , Genótipo , Glucocorticoides/farmacologia , Interneurônios/metabolismo , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Somatostatina/genética , Somatostatina/metabolismo
2.
Front Behav Neurosci ; 12: 227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356704

RESUMO

Neurodevelopmental disorders are thought to be caused by a combination of adverse genetic and environmental insults. The "two-hit" hypothesis suggests that an early first "hit" primes the developing brain to be vulnerable to a second "hit" during adolescence which triggers behavioral dysfunction. We have previously modeled this scenario in mice and found that the combined effect of a genetic hapolinsuffuciency in the brain-derived neurotrophic factor (BDNF) gene (1st hit) and chronic corticosterone (CORT) treatment during adolescence (2nd hit), caused spatial memory impairments in adulthood. Environmental enrichment (EE) protocols are designed to stimulate experience-dependent plasticity and have shown therapeutic actions. This study investigated whether EE can reverse these spatial memory impairments. Wild-type (WT) and BDNF heterozygous (HET) mice were treated with corticosterone (CORT) in their drinking water (50 mg/L) from weeks 6 to 8 and exposed to EE from 7 to 9 weeks. Enriched housing included open top cages with additional toys, tunnels, housing, and platforms. Y-maze novel preference testing, to assess short-term spatial memory, was performed at 10 weeks of age. At week 16 dorsal hippocampus tissue was obtained for Western blot analysis of expression levels of BDNF, the BDNF receptor TrkB, and NMDA receptor subunits, GluNR1, 2A and 2B. As in our previous studies, spatial memory was impaired in our two-hit (BDNF HET + CORT) mice. Simultaneous EE prevented these impairments. However, EE appeared to worsen spatial memory performance in WT mice, particularly those exposed to CORT. While BDNF levels were lower in BDNF HET mice as expected, there were no further effects of CORT or EE in males but a close to significant female CORT × EE × genotype interaction which qualitatively corresponded with Y-maze performance. However, EE caused both sex- and genotype-specific effects on phosphorylated TrkB residues and GluNR expression within the dorsal hippocampus, with GluNR2B levels in males changing in parallel with spatial memory performance. In conclusion, beneficial effects of EE on spatial memory emerge only following two developmental disruptions. The mechanisms by which EE exerts its effects are likely via regulation of multiple activity-dependent pathways, including TrkB and NMDA receptor signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA