Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798157

RESUMO

In defiance of the paradigm that calories from all sources are equivalent, we and others have shown that dietary protein is a dominant regulator of healthy aging. The restriction of protein or the branched-chain amino acid isoleucine promotes healthspan and extends lifespan when initiated in young or adult mice. However, many interventions are less efficacious or even deleterious when initiated in aged animals. Here, we investigate the physiological, metabolic, and molecular consequences of consuming a diet with a 67% reduction of all amino acids (Low AA), or of isoleucine alone (Low Ile), in male and female C57BL/6J.Nia mice starting at 20 months of age. We find that both diet regimens effectively reduce adiposity and improve glucose tolerance, which were benefits that were not mediated by reduced calorie intake. Both diets improve specific aspects of frailty, slow multiple molecular indicators of aging rate, and rejuvenate the aging heart and liver at the molecular level. These results demonstrate that Low AA and Low Ile diets can drive youthful physiological and molecular signatures, and support the possibility that these dietary interventions could help to promote healthy aging in older adults.

2.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106163

RESUMO

Dietary protein and essential amino acid (EAA) restriction promotes favorable metabolic reprogramming, ultimately resulting in improvements to both health and lifespan. However, as individual EAAs have distinct catabolites and engage diverse downstream signaling pathways, it remains unclear to what extent shared or AA-specific molecular mechanisms promote diet-associated phenotypes. Here, we investigated the physiological and molecular effects of restricting either dietary methionine, leucine, or isoleucine (Met-R, Leu-R, and Ile-R) for 3 weeks in C57BL/6J male mice. While all 3 AA-depleted diets promoted fat and lean mass loss and slightly improved glucose tolerance, the molecular responses were more diverse; while hepatic metabolites altered by Met-R and Leu-R were highly similar, Ile-R led to dramatic changes in metabolites, including a 3-fold reduction in the oncometabolite 2-hydroxyglutarate. Pathways regulated in an EAA-specific manner included glycolysis, the pentose phosphate pathway (PPP), nucleotide metabolism, the TCA cycle and amino acid metabolism. Transcriptiome analysis and global profiling of histone post-translational modifications (PTMs) revealed different patterns of responses to each diet, although Met-R and Leu-R again shared similar transcriptional responses. While the pattern of global histone PTMs were largely unique for each dietary intervention, Met-R and Ile-R had similar changes in histone-3 methylation/acetylation PTMs at lysine-9. Few similarities were observed between the physiological or molecular responses to EAA restriction and treatment with rapamycin, an inhibitor of the mTORC1 AA-responsive protein kinase, indicating the response to EAA restriction may be largely independent of mTORC1. Together, these results demonstrate that dietary restriction of individual EAAs has unique, EAA-specific effects on the hepatic metabolome, epigenome, and transcriptome, and suggests that the specific EAAs present in dietary protein may play a key role at regulating health at the molecular level.

3.
Cell Metab ; 35(11): 1976-1995.e6, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37939658

RESUMO

Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.


Assuntos
Isoleucina , Longevidade , Masculino , Feminino , Animais , Camundongos , Isoleucina/farmacologia , Promoção da Saúde , Camundongos Endogâmicos C57BL , Aminoácidos de Cadeia Ramificada/metabolismo
4.
Res Sq ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37790423

RESUMO

Over the last decade, it has become evident that dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and we and others have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice. We found that PR induces sex-specific alterations in circulating metabolites and in the brain lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.

5.
J Gerontol A Biol Sci Med Sci ; 78(11): 1953-1963, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37354128

RESUMO

Calorie restriction (CR) typically promotes a reduction in body mass, which correlates with increased lifespan. We evaluated the overall changes in survival, body mass dynamics, and body composition following long-term graded CR (580 days/19 months) in male C57BL/6J mice. Control mice (0% restriction) were fed ad libitum in the dark phase only (12-hour ad libitum [12AL]). CR groups were restricted by 10%-40% of their baseline food intake (10CR, 20CR, 30CR, and 40CR). Body mass was recorded daily, and body composition was measured at 8 time points. At 728 days/24 months, all surviving mice were culled. A gradation in survival rate over the CR groups was found. The pattern of body mass loss differed over the graded CR groups. Whereas the lower CR groups rapidly resumed an energy balance with no significant loss of fat or fat-free mass, changes in the 30 and 40CR groups were attributed to higher fat-free mass loss and protection of fat mass. Day-to-day changes in body mass were less variable under CR than for the 12AL group. There was no indication that body mass was influenced by external factors. Partial autocorrelation analysis examined the relationship between daily changes in body masses. A negative correlation between mass on Day 0 and Day +1 declined with age in the 12AL but not the CR groups. A reduction in the correlation with age suggested body mass homeostasis is a marker of aging that declines at the end of life and is protected by CR.


Assuntos
Composição Corporal , Restrição Calórica , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Envelhecimento , Longevidade
6.
J Physiol ; 601(11): 2139-2163, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36086823

RESUMO

Low-protein (LP) diets are associated with a decreased risk of diabetes in humans, and promote leanness and glycaemic control in both rodents and humans. While the effects of an LP diet on glycaemic control are mediated by reduced levels of the branched-chain amino acids, we have observed that reducing dietary levels of the other six essential amino acids leads to changes in body composition. Here, we find that dietary histidine plays a key role in the response to an LP diet in male C57BL/6J mice. Specifically reducing dietary levels of histidine by 67% reduces the weight gain of young, lean male mice, reducing both adipose and lean mass without altering glucose metabolism, and rapidly reverses diet-induced obesity and hepatic steatosis in diet-induced obese male mice, increasing insulin sensitivity. This normalization of metabolic health was associated not with caloric restriction or increased activity, but with increased energy expenditure. Surprisingly, the effects of histidine restriction do not require the energy balance hormone Fgf21. Histidine restriction that was started in midlife promoted leanness and glucose tolerance in aged males but not females, but did not affect frailty or lifespan in either sex. Finally, we demonstrate that variation in dietary histidine levels helps to explain body mass index differences in humans. Overall, our findings demonstrate that dietary histidine is a key regulator of weight and body composition in male mice and in humans, and suggest that reducing dietary histidine may be a translatable option for the treatment of obesity. KEY POINTS: Protein restriction (PR) promotes metabolic health in rodents and humans and extends rodent lifespan. Restriction of specific individual essential amino acids can recapitulate the benefits of PR. Reduced histidine promotes leanness and increased energy expenditure in male mice. Reduced histidine does not extend the lifespan of mice when begun in midlife. Dietary levels of histidine are positively associated with body mass index in humans.


Assuntos
Histidina , Magreza , Masculino , Humanos , Animais , Camundongos , Idoso , Histidina/metabolismo , Camundongos Endogâmicos C57BL , Dieta , Obesidade/metabolismo , Proteínas , Metabolismo Energético
7.
Aging Cell ; 21(12): e13721, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36199173

RESUMO

Mitochondrial NAD+ -dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)-dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR-mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole-body aerobic capacity but is dispensable for CR-dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3-/- ) yielded a longer overall and maximum lifespan as compared to Sirt3+/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3-/- CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging.


Assuntos
Restrição Calórica , Longevidade , Sirtuína 3 , Animais , Masculino , Camundongos , Acetilação , Envelhecimento/metabolismo , Longevidade/genética , Mitocôndrias/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Estresse Oxidativo/genética
8.
Aging Cell ; 21(4): e13585, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35266264

RESUMO

Dietary macronutrient composition influences both hepatic function and aging. Previous work suggested that longevity and hepatic gene expression levels were highly responsive to dietary protein, but almost unaffected by other macronutrients. In contrast, we found expression of 4005, 4232, and 4292 genes in the livers of mice were significantly associated with changes in dietary protein (5%-30%), fat (20%-60%), and carbohydrate (10%-75%), respectively. More genes in aging-related pathways (notably mTOR, IGF-1, and NF-kappaB) had significant correlations with dietary fat intake than protein and carbohydrate intake, and the pattern of gene expression changes in relation to dietary fat intake was in the opposite direction to the effect of graded levels of caloric restriction consistent with dietary fat having a negative impact on aging. We found 732, 808, and 995 serum metabolites were significantly correlated with dietary protein (5%-30%), fat (8.3%-80%), and carbohydrate (10%-80%) contents, respectively. Metabolomics pathway analysis revealed sphingosine-1-phosphate signaling was the significantly affected pathway by dietary fat content which has also been identified as significant changed metabolic pathway in the previous caloric restriction study. Our results suggest dietary fat has major impact on aging-related gene and metabolic pathways compared with other macronutrients.


Assuntos
Metaboloma , Transcriptoma , Animais , Carboidratos/farmacologia , Carboidratos da Dieta/metabolismo , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Proteínas Alimentares/metabolismo , Proteínas Alimentares/farmacologia , Ingestão de Energia , Fígado/metabolismo , Camundongos , Nutrientes , Transcriptoma/genética
9.
Cell Metab ; 34(2): 209-226.e5, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108511

RESUMO

Low-protein diets promote metabolic health in humans and rodents. Despite evidence that sex and genetic background are key factors in the response to diet, most protein intake studies examine only a single strain and sex of mice. Using multiple strains and both sexes of mice, we find that improvements in metabolic health in response to reduced dietary protein strongly depend on sex and strain. While some phenotypes were conserved across strains and sexes, including increased glucose tolerance and energy expenditure, we observed high variability in adiposity, insulin sensitivity, and circulating hormones. Using a multi-omics approach, we identified mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype, providing molecular insight into the differential response to protein restriction. Our results highlight the importance of sex and genetic background in the response to dietary protein level, and the potential importance of a personalized medicine approach to dietary interventions.


Assuntos
Dieta com Restrição de Proteínas , Resistência à Insulina , Animais , Metabolismo Energético/genética , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Patrimônio Genético , Resistência à Insulina/genética , Fígado/metabolismo , Masculino , Camundongos
11.
Nat Rev Mol Cell Biol ; 23(1): 56-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34518687

RESUMO

Dietary restriction with adequate nutrition is the gold standard for delaying ageing and extending healthspan and lifespan in diverse species, including rodents and non-human primates. In this Review, we discuss the effects of dietary restriction in these mammalian model organisms and discuss accumulating data that suggest that dietary restriction results in many of the same physiological, metabolic and molecular changes responsible for the prevention of multiple ageing-associated diseases in humans. We further discuss how different forms of fasting, protein restriction and specific reductions in the levels of essential amino acids such as methionine and the branched-chain amino acids selectively impact the activity of AKT, FOXO, mTOR, nicotinamide adenine dinucleotide (NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which are key components of some of the most important nutrient-sensing geroprotective signalling pathways that promote healthy longevity.


Assuntos
Restrição Calórica , Saúde , Longevidade/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Estresse Oxidativo
12.
Aging Biol ; 12022.
Artigo em Inglês | MEDLINE | ID: mdl-37186544

RESUMO

Calorie restriction (CR) promotes healthspan and extends the lifespan of diverse organisms, including mice, and there is intense interest in understanding the molecular mechanisms by which CR functions. Some studies have demonstrated that CR induces fibroblast growth factor 21 (FGF21), a hormone that regulates energy balance and that when overexpressed, promotes metabolic health and longevity in mice, but the role of FGF21 in the response to CR has not been fully investigated. We directly examined the role of FGF21 in the physiological and metabolic response to a CR diet by feeding Fgf21-/- and wild-type control mice either ad libitum (AL) diet or a 30% CR diet for 15 weeks. Here, we find that FGF21 is largely dispensable for CR-induced improvements in body composition and energy balance, but that lack of Fgf21 blunts CR-induced changes aspects of glucose regulation and insulin sensitivity in females. Surprisingly, despite not affecting CR-induced changes in energy expenditure, loss of Fgf21 significantly blunts CR-induced beiging of white adipose tissue in male but not female mice. Our results shed new light on the molecular mechanisms involved in the beneficial effects of a CR diet, clarify that FGF21 is largely dispensable for the metabolic effects of a CR diet, and highlight a sex-dependent role for FGF21 in the molecular adaptation of white adipose tissue to CR.

13.
Cell Metab ; 33(12): 2303-2304, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879234

RESUMO

There is significant interest in identifying compounds that mimic the effects of dietary restriction on healthy aging. In the latest issue of Cell Metabolism, Le Couteur et al. (2021) use a nutritional geometry approach to survey the effects of three such compounds on the hepatic proteome across a changing dietary landscape.


Assuntos
Dieta , Alimentos
14.
Nat Metab ; 3(10): 1327-1341, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34663973

RESUMO

Calorie restriction (CR) promotes healthy ageing in diverse species. Recently, it has been shown that fasting for a portion of each day has metabolic benefits and promotes lifespan. These findings complicate the interpretation of rodent CR studies, in which animals typically eat only once per day and rapidly consume their food, which collaterally imposes fasting. Here we show that a prolonged fast is necessary for key metabolic, molecular and geroprotective effects of a CR diet. Using a series of feeding regimens, we dissect the effects of calories and fasting, and proceed to demonstrate that fasting alone recapitulates many of the physiological and molecular effects of CR. Our results shed new light on how both when and how much we eat regulate metabolic health and longevity, and demonstrate that daily prolonged fasting, and not solely reduced caloric intake, is likely responsible for the metabolic and geroprotective benefits of a CR diet.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Animais , Longevidade/fisiologia , Camundongos
15.
Nat Metab ; 3(9): 1144-1145, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552268
16.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330829

RESUMO

The evolutionary context of why caloric restriction (CR) activates physiological mechanisms that slow the process of aging remains unclear. The main goal of this analysis was to identify, using metabolomics, the common pathways that are modulated across multiple tissues (brown adipose tissue, liver, plasma, and brain) to evaluate two alternative evolutionary models: the "disposable soma" and "clean cupboards" ideas. Across the four tissues, we identified more than 10,000 different metabolic features. CR altered the metabolome in a graded fashion. More restriction led to more changes. Most changes, however, were tissue specific, and in some cases, metabolites changed in opposite directions in different tissues. Only 38 common metabolic features responded to restriction in the same way across all four tissues. Fifty percent of the common altered metabolites were carboxylic acids and derivatives, as well as lipids and lipid-like molecules. The top five modulated canonical pathways were l-carnitine biosynthesis, NAD (nicotinamide adenine dinucleotide) biosynthesis from 2-amino-3-carboxymuconate semialdehyde, S-methyl-5'-thioadenosine degradation II, NAD biosynthesis II (from tryptophan), and transfer RNA (tRNA) charging. Although some pathways were modulated in common across tissues, none of these reflected somatic protection, and each tissue invoked its own idiosyncratic modulation of pathways to cope with the reduction in incoming energy. Consequently, this study provides greater support for the clean cupboards hypothesis than the disposable soma interpretation.


Assuntos
Restrição Calórica , Carnitina/biossíntese , Metabolismo Energético/fisiologia , NAD/biossíntese , RNA de Transferência/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA de Transferência/genética , Distribuição Aleatória , Distribuição Tecidual
17.
J Gerontol A Biol Sci Med Sci ; 76(12): 2156-2161, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34323268

RESUMO

While the average human life span continues to increase, there is little evidence that this is leading to a contemporaneous increase in "healthy years" experienced by our aging population. Consequently, many scientists focus their research on understanding the process of aging and trialing interventions that can promote healthspan. The 2021 Midwest Aging Consortium consensus statement is to develop and further the understanding of aging and age-related disease using the wealth of expertise across universities in the Midwestern United States. This report summarizes the cutting-edge research covered in a virtual symposium held by a consortium of researchers in the Midwestern United States, spanning topics such as senescence biomarkers, serotonin-induced DNA protection, immune system development, multisystem impacts of aging, neural decline following severe infection, the unique transcriptional impact of calorie restriction of different fat depots, the pivotal role of fasting in calorie restriction, the impact of peroxisome dysfunction, and the influence of early life trauma on health. The symposium speakers presented data from studies conducted in a variety of common laboratory animals as well as less-common species, including Caenorhabditis elegans, Drosophila, mice, rhesus macaques, elephants, and humans. The consensus of the symposium speakers is that this consortium highlights the strength of aging research in the Midwestern United States as well as the benefits of a collaborative and diverse approach to geroscience.


Assuntos
Envelhecimento , Pesquisa Biomédica/tendências , Gerociência , Animais , Restrição Calórica , Gerociência/tendências , Humanos , Longevidade , Macaca mulatta , Modelos Animais
19.
Cell Metab ; 33(5): 905-922.e6, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33887198

RESUMO

Low-protein diets promote metabolic health in rodents and humans, and the benefits of low-protein diets are recapitulated by specifically reducing dietary levels of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we demonstrate that each BCAA has distinct metabolic effects. A low isoleucine diet reprograms liver and adipose metabolism, increasing hepatic insulin sensitivity and ketogenesis and increasing energy expenditure, activating the FGF21-UCP1 axis. Reducing valine induces similar but more modest metabolic effects, whereas these effects are absent with low leucine. Reducing isoleucine or valine rapidly restores metabolic health to diet-induced obese mice. Finally, we demonstrate that variation in dietary isoleucine levels helps explain body mass index differences in humans. Our results reveal isoleucine as a key regulator of metabolic health and the adverse metabolic response to dietary BCAAs and suggest reducing dietary isoleucine as a new approach to treating and preventing obesity and diabetes.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Dieta , Isoleucina/metabolismo , Valina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Índice de Massa Corporal , Dieta/veterinária , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
20.
Cell Metab ; 33(5): 888-904.e6, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667386

RESUMO

The protein leverage hypothesis predicts that low dietary protein should increase energy intake and cause adiposity. We designed 10 diets varying from 1% to 20% protein combined with either 60% or 20% fat. Contrasting the expectation, very low protein did not cause increased food intake. Although these mice had activated hunger signaling, they ate less food, resulting in decreased body weight and improved glucose tolerance but not increased frailty, even under 60% fat. Moreover, they did not show hyperphagia when returned to a 20% protein diet, which could be mimicked by treatment with rapamycin. Intracerebroventricular injection of AAV-S6K1 significantly blunted the decrease in both food intake and body weight in mice fed 1% protein, an effect not observed with inhibition of eIF2a, TRPML1, and Fgf21 signaling. Hence, the 1% protein diet induced decreased food intake and body weight via a mechanism partially dependent on hypothalamic mTOR signaling.


Assuntos
Dieta com Restrição de Proteínas , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ingestão de Alimentos , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Teste de Tolerância a Glucose , Hiperfagia/tratamento farmacológico , Hipotálamo/metabolismo , Leptina/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA