Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nat Microbiol ; 9(3): 776-786, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321182

RESUMO

Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.


Assuntos
Infecções por Caliciviridae , Norovirus , Vacinas , Humanos , Animais , Macaca mulatta , Intestino Delgado
3.
Nat Commun ; 14(1): 6516, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845211

RESUMO

Acute gastroenteritis caused by human noroviruses (HuNoVs) is a significant global health and economic burden and is without licensed vaccines or antiviral drugs. The GII.4 HuNoV causes most epidemics worldwide. This virus undergoes epochal evolution with periodic emergence of variants with new antigenic profiles and altered specificity for histo-blood group antigens (HBGA), the determinants of cell attachment and susceptibility, hampering the development of immunotherapeutics. Here, we show that a llama-derived nanobody M4 neutralizes multiple GII.4 variants with high potency in human intestinal enteroids. The crystal structure of M4 complexed with the protruding domain of the GII.4 capsid protein VP1 revealed a conserved epitope, away from the HBGA binding site, fully accessible only when VP1 transitions to a "raised" conformation in the capsid. Together with dynamic light scattering and electron microscopy of the GII.4 VLPs, our studies suggest a mechanism in which M4 accesses the epitope by altering the conformational dynamics of the capsid and triggering its disassembly to neutralize GII.4 infection.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Caliciviridae , Norovirus , Humanos , Proteínas do Capsídeo/química , Capsídeo/metabolismo , Norovirus/genética , Sítios de Ligação , Epitopos/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo
4.
mBio ; : e0217723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905910

RESUMO

Noroviruses are a major cause of acute gastroenteritis worldwide and can establish chronic infection in immunocompromised individuals. To investigate the mechanisms of norovirus evolution during chronic infection, we selected seven representative patients from a National Institutes of Health study cohort who sustained norovirus infection for periods ranging from 73 to 1,492 days. Six patients shed viruses belonging to a single genotype (GII.2[PNA], GII.4 New Orleans[P4], GII.4 Den Haag[P4], GII.3[P21], GII.6[P7], or GII.14[P7]) over the period examined, while one patient sequentially shed two genotypes (GII.6[P7] followed by GII.4 Sydney[P31]). Norovirus genomes from consecutive stool samples were sequenced at high resolution (>3,300 reads/nucleotide position) using the Illumina platform and subjected to bioinformatics analysis. Norovirus sequences could be resolved into one or more discrete clonal RNA genomes that persisted within these patients over time. Phylogenetic analyses inferred that clonal populations originated from a single founder virus and not by reinfection with community strains. Estimated evolutionary rates of clonal populations during persistent infection were similar to those of noroviruses from acute infection in the global database, suggesting that inherently higher RNA-dependent polymerase error rates were not associated with the ability to persist. The high-resolution analysis of norovirus diversity and evolution at the population level described here should allow a better understanding of adaptive mutations sustained during chronic infection. IMPORTANCE Noroviruses are an important cause of chronic diarrhea in patients with compromised immune systems. Presently, there are no effective therapies to clear the virus, which can persist for years in the intestinal tract. The goal of our study was to develop a better understanding of the norovirus strains that are associated with these long-term infections. With the remarkable diversity of norovirus strains detected in the immunocompromised patient cohort we studied, it appears that most, if not all, noroviruses circulating in nature may have the capacity to establish a chronic infection when a person is unable to mount an effective immune response. Our work is the most comprehensive genetic data set generated to date in which near full-length genomes from noroviruses associated with chronic infection were analyzed by high-resolution next-generation sequencing. Analysis of this data set led to our discovery that certain patients in our cohort were shedding noroviruses that could be subdivided into distinct haplotypes or populations of viruses that were co-evolving independently. The ability to track haplotypes of noroviruses during chronic infection will allow us to fine-tune our understanding of how the virus adapts and maintains itself in the human host, and how selective pressures such as antiviral drugs can affect these distinct populations.

5.
Proc Natl Acad Sci U S A ; 120(9): e2214421120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36821582

RESUMO

Rotaviruses (RVs) preferentially replicate in the small intestine and frequently cause severe diarrheal disease, and the following enteric infection generally induces variable levels of protective systemic and mucosal immune responses in humans and other animals. Rhesus rotavirus (RRV) is a simian RV that was previously used as a human RV vaccine and has been extensively studied in mice. Although RRV replicates poorly in the suckling mouse intestine, infection induces a robust and protective antibody response. The recent availability of plasmid only-based RV reverse genetics systems has enabled the generation of recombinant RVs expressing foreign proteins. However, recombinant RVs have not yet been experimentally tested as potential vaccine vectors to immunize against other gastrointestinal pathogens in vivo. This is a newly available opportunity because several live-attenuated RV vaccines are already widely administered to infants and young children worldwide. To explore the feasibility of using RV as a dual vaccine vector, we rescued replication-competent recombinant RRVs harboring bicistronic gene segment 7 that encodes the native RV nonstructural protein 3 (NSP3) protein and a human norovirus (HuNoV) VP1 protein or P domain from the predominant genotype GII.4. The rescued viruses expressed HuNoV VP1 or P protein in infected cells in vitro and elicited systemic and local antibody responses to HuNoV and RRV following oral infection of suckling mice. Serum IgG and fecal IgA from infected suckling mice bound to and neutralized both RRV and HuNoV. These findings have encouraging practical implications for the design of RV-based next-generation multivalent enteric vaccines to target HuNoV and other human enteric pathogens.


Assuntos
Norovirus , Infecções por Rotavirus , Rotavirus , Criança , Lactente , Humanos , Animais , Camundongos , Pré-Escolar , Rotavirus/genética , Anticorpos Neutralizantes , Mucosa , Anticorpos Antivirais
6.
PLoS Pathog ; 17(7): e1009744, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34255807

RESUMO

Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission.


Assuntos
Genoma Viral/genética , Norovirus/genética , Evolução Biológica , Evolução Molecular , Estudo de Associação Genômica Ampla , Humanos
7.
J Virol Methods ; 297: 114196, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34019938

RESUMO

BACKGROUND: Noroviruses are the most common cause of viral gastroenteritis worldwide, yet there is a deficit in the understanding of protective immunity. Surrogate neutralization assays have been widely used that measure the ability of antibodies to block virus-like particle (VLP) binding to histo-blood group antigens (HBGAs). However, screening large sample sets against multiple antigens using the traditional HBGA blocking assay requires significant investment in terms of time, equipment, and technical expertise, largely associated with the generation of purified VLPs. METHODS: To address these issues, a luciferase immunoprecipitation system (LIPS) assay was modified to measure the norovirus-specific HBGA blockade activity of antibodies. The assay (designated LIPS-Blockade) was validated using a panel of well-characterized homotypic and heterotypic hyperimmune sera as well as strain-specific HBGA blocking monoclonal antibodies. RESULTS: The LIPS-Blockade assay was comparable in specificity to a standard HBGA blocking protocol performed with VLPs. Using time-ordered patient sera, the luciferase-based approach was also able to detect changes in HBGA blocking titers following viral challenge and natural infection with norovirus. CONCLUSION: In this study we developed a rapid, robust, and scalable surrogate neutralization assay for noroviruses that circumvented the need for purified VLPs. This LIPS-Blockade assay should streamline the process of large-scale immunological studies, ultimately aiding in the characterization of protective immunity to human noroviruses.


Assuntos
Anticorpos Antivirais , Antígenos de Grupos Sanguíneos , Norovirus , Anticorpos Monoclonais/análise , Anticorpos Antivirais/análise , Antígenos de Grupos Sanguíneos/metabolismo , Genótipo , Humanos , Luciferases/metabolismo , Testes de Neutralização
9.
Nat Commun ; 11(1): 2759, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488028

RESUMO

Human noroviruses are a major cause of diarrheal illness, but pathogenesis is poorly understood. Here, we investigate the cellular tropism of norovirus in specimens from four immunocompromised patients. Abundant norovirus antigen and RNA are detected throughout the small intestinal tract in jejunal and ileal tissue from one pediatric intestinal transplant recipient with severe gastroenteritis. Negative-sense viral RNA, a marker of active viral replication, is found predominantly in intestinal epithelial cells, with chromogranin A-positive enteroendocrine cells (EECs) identified as a permissive cell type in this patient. These findings are consistent with the detection of norovirus-positive EECs in the other three immunocompromised patients. Investigation of the signaling pathways induced in EECs that mediate communication between the gut and brain may clarify mechanisms of pathogenesis and lead to the development of in vitro model systems in which to evaluate norovirus vaccines and treatment.


Assuntos
Células Enteroendócrinas/imunologia , Células Epiteliais/imunologia , Norovirus/fisiologia , Doença Aguda , District of Columbia , Células Enteroendócrinas/metabolismo , Gastroenterite/virologia , Genótipo , Humanos , Intestino Delgado/patologia , Intestino Delgado/virologia , Norovirus/genética , RNA Viral , Replicação Viral
10.
Viruses ; 12(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392864

RESUMO

Human sapovirus is a causative agent of acute gastroenteritis in all age groups. The use of full-length viral genomes has proven beneficial to investigate evolutionary dynamics and transmission chains. In this study, we developed a full-length genome sequencing platform for human sapovirus and sequenced the oldest available strains (collected in the 1970s) to analyse diversification of sapoviruses. Sequence analyses from five major genotypes (GI.1, GI.2, GII.1, GII.3, and GIV.1) showed limited intra-genotypic diversification for over 20-40 years. The accumulation of amino acid mutations in VP1 was detected for GI.2 and GIV.1 viruses, while having a similar rate of nucleotide evolution to the other genotypes. Differences in the phylogenetic clustering were detected between RdRp and VP1 sequences of our archival strains as well as other reported putative recombinants. However, the lack of the parental strains and differences in diversification among genomic regions suggest that discrepancies in the phylogenetic clustering of sapoviruses could be explained, not only by recombination, but also by disparate nucleotide substitution patterns between RdRp and VP1 sequences. Together, this study shows that, contrary to noroviruses, sapoviruses present limited diversification by means of intra-genotype variation and recombination.


Assuntos
Infecções por Caliciviridae/virologia , Evolução Molecular , Genoma Viral , Sapovirus/genética , Sequência de Bases , Fezes/virologia , Gastroenterite/virologia , Variação Genética , Genômica , Genótipo , Humanos , Filogenia , Sapovirus/classificação , Sapovirus/isolamento & purificação
12.
J Infect Dis ; 221(4): 578-588, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31562500

RESUMO

BACKGROUND: Chronic norovirus infection in immunocompromised patients can be severe, and presently there is no effective treatment. Adoptive transfer of virus-specific T cells has proven to be safe and effective for the treatment of many viral infections, and this could represent a novel treatment approach for chronic norovirus infection. Hence, we sought to generate human norovirus-specific T cells (NSTs) that can recognize different viral sequences. METHODS: Norovirus-specific T cells were generated from peripheral blood of healthy donors by stimulation with overlapping peptide libraries spanning the entire coding sequence of the norovirus genome. RESULTS: We successfully generated T cells targeting multiple norovirus antigens with a mean 4.2 ± 0.5-fold expansion after 10 days. Norovirus-specific T cells comprised both CD4+ and CD8+ T cells that expressed markers for central memory and effector memory phenotype with minimal expression of coinhibitory molecules, and they were polyfunctional based on cytokine production. We identified novel CD4- and CD8-restricted immunodominant epitopes within NS6 and VP1 antigens. Furthermore, NSTs showed a high degree of cross-reactivity to multiple variant epitopes from clinical isolates. CONCLUSIONS: Our findings identify immunodominant human norovirus T-cell epitopes and demonstrate that it is feasible to generate potent NSTs from third-party donors for use in antiviral immunotherapy.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Caliciviridae/terapia , Reações Cruzadas/imunologia , Norovirus/imunologia , Doadores de Tecidos , Sequência de Aminoácidos , Antígenos Virais/imunologia , Infecções por Caliciviridae/virologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Epitopos de Linfócito T/imunologia , Estudos de Viabilidade , Voluntários Saudáveis , Humanos , Hospedeiro Imunocomprometido , Epitopos Imunodominantes/imunologia , Norovirus/genética
13.
J Gen Virol ; 100(11): 1469-1470, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573467

RESUMO

The family Caliciviridae includes viruses with single-stranded, positive-sense RNA genomes of 7.4-8.3 kb. The most clinically important representatives are human noroviruses, which are a leading cause of acute gastroenteritis in humans. Virions are non-enveloped with icosahedral symmetry. Members of seven genera infect mammals (Lagovirus, Norovirus, Nebovirus, Recovirus, Sapovirus, Valovirus and Vesivirus), members of two genera infect birds (Bavovirus and Nacovirus), and members of two genera infect fish (Minovirus and Salovirus). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caliciviridae, which is available at ictv.global/report/caliciviridae.


Assuntos
Caliciviridae/classificação , RNA Viral/genética , Vírion/ultraestrutura , Animais , Aves , Caliciviridae/genética , Caliciviridae/isolamento & purificação , Caliciviridae/ultraestrutura , Infecções por Caliciviridae/virologia , Peixes , Mamíferos
14.
Viruses ; 11(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083353

RESUMO

Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.


Assuntos
Epitopos de Linfócito T/imunologia , Gastroenterite/prevenção & controle , Norovirus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Gastroenterite/imunologia , Gastroenterite/virologia , Humanos , Norovirus/química , Norovirus/genética , Vacinas Virais/química , Vacinas Virais/genética
15.
Cell Host Microbe ; 24(2): 208-220.e8, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30092198

RESUMO

In enteric viral infections, such as those with rotavirus and norovirus, individual viral particles shed in stool are considered the optimal units of fecal-oral transmission. We reveal that rotaviruses and noroviruses are also shed in stool as viral clusters enclosed within vesicles that deliver a high inoculum to the receiving host. Cultured cells non-lytically release rotaviruses and noroviruses inside extracellular vesicles. In addition, stools of infected hosts contain norovirus and rotavirus within vesicles of exosomal or plasma membrane origin. These vesicles remain intact during fecal-oral transmission and thereby transport multiple viral particles collectively to the next host, enhancing both the MOI and disease severity. Vesicle-cloaked viruses are non-negligible populations in stool and have a disproportionately larger contribution to infectivity than free viruses. Our findings indicate that vesicle-cloaked viruses are highly virulent units of fecal-oral transmission and highlight a need for antivirals targeting vesicles and virus clustering.


Assuntos
Infecções por Caliciviridae/transmissão , Vesículas Extracelulares/virologia , Fezes/virologia , Infecções por Rotavirus/transmissão , Animais , Infecções por Caliciviridae/virologia , Pré-Escolar , Transmissão de Doença Infecciosa , Exossomos/virologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Norovirus/genética , Norovirus/patogenicidade , Rotavirus/genética , Rotavirus/patogenicidade , Infecções por Rotavirus/virologia , Suínos , Eliminação de Partículas Virais
16.
Diagn Microbiol Infect Dis ; 92(2): 143-146, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29934072

RESUMO

We estimated the prevalence of astrovirus, sapovirus, and norovirus among patients enrolled in research protocols and receiving medical care at the Clinical Center of the National Institutes of Health, Bethesda, MD, a clinical research hospital with a large immunocompromised patient population. We identified patients whose fecal specimens were submitted to the Clinical Center for testing on the Biofire FilmArray Gastrointestinal Panel from September 15, 2015 through November 30, 2016. Among 442 patients with fecal specimens submitted for multiplex testing, 11% had norovirus identified, 2% had astrovirus, and 2% had sapovirus. Like norovirus, astrovirus was detected in multiple sequential samples from a single patient, consistent with chronic infection or the occurrence of multiple reinfections. Coinfection with non-viral gastrointestinal pathogens was detected in 31% of patients with positive results for norovirus, astrovirus, or sapovirus. Norovirus remains common in this immunocompromised patient population, and both sapovirus and astrovirus are present.


Assuntos
Infecções por Astroviridae/epidemiologia , Infecções por Caliciviridae/epidemiologia , Mamastrovirus/isolamento & purificação , Norovirus/isolamento & purificação , Sapovirus/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Astroviridae/virologia , Infecções por Caliciviridae/virologia , Criança , Pré-Escolar , Coinfecção , Fezes/virologia , Hospitais , Humanos , Hospedeiro Imunocomprometido , Pessoa de Meia-Idade , Prevalência , Atenção Terciária à Saúde , Adulto Jovem
17.
J Immunol ; 200(12): 4157-4169, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29735480

RESUMO

Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-ß expression were not coupled in that a significant delay in the detection of secreted INF-ß was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-ß that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.


Assuntos
Infecções por Caliciviridae/genética , Macrófagos/virologia , Transcriptoma/genética , Animais , Infecções por Caliciviridae/virologia , Ciclo Celular/genética , Linhagem Celular , Replicação do DNA/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interferon beta/genética , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Células RAW 264.7 , Transcrição Gênica/genética
19.
J Virol Methods ; 248: 116-129, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28673856

RESUMO

A luciferase immunoprecipitation systems (LIPS) assay was developed to define the antigenic specificity and titer of antibodies directed against human norovirus (HuNoV). Recombinant proteins, expressed by plasmid constructs encoding Renilla luciferase (Ruc) fused to the full-length HuNoV major capsid protein (VP1) (Ruc-antigen), were generated for ten HuNoV strains. In addition, subdomain constructs Ruc-Shell (S) and Ruc-Protruding (P) were engineered for a representative GII.4 norovirus (strain GII.4/2006b). The LIPS assay measured antibody levels in a well-defined panel of HuNoV-specific sera, and the results were compared to an ELISA standard. In hyperimmune sera, the LIPS produced titers similar to or higher than those measured by the ELISA of HuNoV-specific antibodies. The specificity of antibodies in various sera was profiled by LIPS with a panel of diverse Ruc-antigens containing full-length HuNoV VP1 proteins or VP1 subdomains, and the assay detected both specific and cross-reactive antibodies. Competition assays, in which antibodies were pre-incubated with one or more intact VLPs representing different genotypes, proved useful in further assessment of the antibody specificity detected by LIPS in complex polyclonal sera. The profiling of HuNoV-specific antibodies in the high-throughput LIPS format may prove useful in defining the strength or specificity of the adaptive immune response following natural infection or vaccination.


Assuntos
Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Imunoprecipitação/métodos , Luciferases de Renilla/imunologia , Norovirus/imunologia , Animais , Anticorpos Antivirais/isolamento & purificação , Especificidade de Anticorpos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos , Humanos , Luciferases de Renilla/genética , Norovirus/isolamento & purificação , Proteínas Recombinantes de Fusão/imunologia , Suínos , Porco Miniatura , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia
20.
Vet Microbiol ; 203: 68-72, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28619170

RESUMO

Molecular and serological data suggest that noroviruses (NoVs) might be transmitted between humans and domestic carnivores. In this study we screened an age-stratified collection of canine sera (n=516) by using an ELISA assay based on virus-like particles (VLPs) of human NoVs GII.4 and GIV.1 and carnivore NoVs GIV.2 and GVI.2. Antibodies against GII.4 and GIV.1 human NoVs and GIV.2 and GVI.2 NoVs from carnivores were identified in dog sera (13.0%, 67/516) suggesting their exposure to homologous and heterologous NoVs. Analysis of the trends of age-class prevalence showed a gradual increase in the positive rate from 9.0% and 7.0%, in young dogs <1year of age to 15.0% in dogs older than 12 years, for GII.4 and GVI.2 NoVs, respectively. A significant difference in the IgG distribution by age classes was observed for GIV.1 NoVs, with the highest rate of antibodies (7.0%) in the age group <1year and the lowest (1.0%) in the age-classes 7-9 (P=0.049). High correlation between the reactivity to GII.4 and GVI.2 NoVs was observed, likely due to conserved epitopes in the capsid structure.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Caliciviridae/veterinária , Proteínas do Capsídeo/imunologia , Doenças do Cão/epidemiologia , Gastroenterite/veterinária , Norovirus/imunologia , Distribuição por Idade , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Doenças do Cão/prevenção & controle , Doenças do Cão/virologia , Cães , Ensaio de Imunoadsorção Enzimática/veterinária , Gastroenterite/epidemiologia , Gastroenterite/prevenção & controle , Gastroenterite/virologia , Humanos , Norovirus/classificação , Norovirus/isolamento & purificação , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA