Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16057, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749144

RESUMO

E3 ubiquitin ligases are critical to the protein degradation pathway by catalyzing the final step in protein ubiquitination by mediating ubiquitin transfer from E2 enzymes to target proteins. Nedd4 is a HECT domain-containing E3 ubiquitin ligase with a wide range of protein targets, the dysregulation of which has been implicated in myriad pathologies, including cancer and Parkinson's disease. Towards the discovery of compounds disrupting the auto-ubiquitination activity of Nedd4, we developed and optimized a TR-FRET assay for high-throughput screening. Through selective screening of a library of potentially covalent compounds, compounds 25 and 81 demonstrated apparent IC50 values of 52 µM and 31 µM, respectively. Tandem mass spectrometry (MS/MS) analysis confirmed that 25 and 81 were covalently bound to Nedd4 cysteine residues (Cys182 and Cys867). In addition, 81 also adducted to Cys627. Auto-ubiquitination assays of Nedd4 mutants featuring alanine substitutions for each of these cysteines suggested that the mode of inhibition of these compounds occurs through blocking the catalytic Cys867. The discovery of these inhibitors could enable the development of therapeutics for various diseases caused by Nedd4 E3 ligase dysregulation.


Assuntos
Espectrometria de Massas em Tandem , Ubiquitina , Ubiquitinação , Ubiquitina-Proteína Ligases , Alanina , Cisteína
2.
J Chem Inf Model ; 63(13): 4070-4078, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350740

RESUMO

DCAF1 functions as a substrate recruitment subunit for the RING-type CRL4DCAF1 and the HECT family EDVPDCAF1 E3 ubiquitin ligases. The WDR domain of DCAF1 serves as a binding platform for substrate proteins and is also targeted by HIV and SIV lentiviral adaptors to induce the ubiquitination and proteasomal degradation of antiviral host factors. It is therefore attractive both as a potential therapeutic target for the development of chemical inhibitors and as an E3 ligase that could be recruited by novel PROTACs for targeted protein degradation. In this study, we used a proteome-scale drug-target interaction prediction model, MatchMaker, combined with cheminformatics filtering and docking to identify ligands for the DCAF1 WDR domain. Biophysical screening and X-ray crystallographic studies of the predicted binders confirmed a selective ligand occupying the central cavity of the WDR domain. This study shows that artificial intelligence-enabled virtual screening methods can successfully be applied in the absence of previously known ligands.


Assuntos
Inteligência Artificial , Proteínas de Transporte , Ligantes , Proteínas de Transporte/química , Ubiquitina-Proteína Ligases/metabolismo , Aprendizado de Máquina
3.
J Exp Zool A Ecol Integr Physiol ; 337(4): 337-345, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951526

RESUMO

Torpor is a heterothermic response that occurs in some animals to reduce metabolic expenditure. The speckled mousebird (Colius striatus) belongs to one of the few avian taxa possessing the capacity for pronounced torpor, entering a hypometabolic state with concomitant decreases in body temperature in response to reduced food access or elevated thermoregulatory energy requirements. The pyruvate dehydrogenase complex (PDC) is a crucial site regulating metabolism by bridging glycolysis and the Krebs cycle. Three highly conserved phosphorylation sites are found within the E1 enzyme of the complex that inhibit PDC activity and reduce the flow of carbohydrate substrates into the mitochondria. The current study demonstrates a marked increase in S232 phosphorylation during torpor in liver, heart, and skeletal muscle of C. striatus. The increase in S232 phosphorylation during torpor was particularly notable in skeletal muscle where levels were ~49-fold higher in torpid birds compared to controls. This was in contrast to the other two phosphorylation sites (S293 and S300) which remained consistently phosphorylated regardless of tissue. The relevant PDH kinase (PDHK1) known to phosphorylate S232 was found to be substantially upregulated (~5-fold change) in the muscle during torpor as well as increasing moderately in the liver (~2.2-fold increase). Additionally, in the heart, a slight (~23%) decrease in total PDH levels was noted. Taken together the phosphorylation changes in PDH suggest that inhibition of the complex is a common feature across several tissues in the mousebird during torpor and that this regulation is mediated at a specific residue.


Assuntos
Ácido Pirúvico , Torpor , Animais , Aves , Oxirredutases , Fosforilação
4.
J Therm Biol ; 99: 102996, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420628

RESUMO

Hibernation consists of a series of physiological and biochemical alterations in an animal that allows for reduced body temperatures down to near ambient levels and substantial fuel conservation allowing it to survive on stored fat supplies accumulated during the summer. The Richardson's ground squirrel is one such hibernator that undergoes such changes for as long as 9 months of the year. This study examines the role of regulation of the pyruvate dehydrogenase complex (PDC) during hibernation in the skeletal muscle and liver of the Richardson's ground squirrel. The current study demonstrates a great reduction in the activity of PDC in the hibernating liver, but not in the skeletal muscle. This was matched by a significant increase in the phosphorylation on a regulatory serine residue (S300) of the pyruvate dehydrogenase (PDH) E1α subunit. Examining the expression patterns of the relevant kinases for PDH and the associated phosphatase demonstrated some unexpected results. Specifically, an increase in PDKs 1 and 2 and a decrease in PDK4 was noted in the skeletal muscle tissue in response to hibernation and no alterations in the expression patterns of any of these enzymes were noted in the liver. This suggests that alternative modes of regulation of the kinases may be at play in hibernation to bring about the observed effects. Taken together this study demonstrates that PDH regulatory responses differ markedly between tissues and emphasize the importance of inhibition of the complex in the liver during hibernation.


Assuntos
Hibernação , Fígado/metabolismo , Músculo Esquelético/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Sciuridae/metabolismo , Animais , Masculino , Processamento de Proteína Pós-Traducional
5.
Cryobiology ; 101: 28-37, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34186087

RESUMO

Hibernation is a metabolic/physiological strategy employed by many mammals to cope with periods when energy usage is greater than its input. Animals undergoing hibernation need to greatly reduce their metabolic rate and reshape their catabolic processes to survive on stored triglycerides. Citrate synthase (CS) is one of only two irreversible steps in the citric acid cycle (CAC) and forms an important regulatory checkpoint that gates the entry of acetyl-CoA formed in glycolysis or fatty acid catabolism into this critical central metabolic hub. This study investigated the regulation of citrate synthase in the muscle tissue of a small mammalian hibernator through comparison of functional and structural properties. The results demonstrated a significant decrease in the Vmax of purified torpid CS compared to the control euthermic enzyme (1.2-1.7 fold greater in the control) that was evident over a wide range of temperatures (8, 22 and 37 °C) that are encountered by the enzyme in hibernation. This was also reflected in the specific activity of the enzyme in crude muscle protein extracts. Analyzing the purified CS through immunoblotting demonstrated that the enzyme contained noticeably less lysine succinylation in the torpid state (about 50% of euthermic levels) and this was correlated with an increase in total levels of SIRT5, the enzyme responsible for mediating desuccinylation in the mitochondria (2.2 fold increase). Taken together, the results of this study support the idea that CS is inhibited during hibernation in the ground squirrel skeletal muscle and that this alteration could be mediated by decreases in succinylation.


Assuntos
Criopreservação , Lisina , Animais , Citrato (si)-Sintase , Criopreservação/métodos , Músculo Esquelético , Sciuridae
6.
Protein J ; 39(5): 531-541, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33095404

RESUMO

The intertidal marine snail, Littorina littorea, has evolved to survive bouts of anoxia and extracellular freezing brought about by changing tides and subsequent exposure to harsh environmental conditions. Survival in these anoxic conditions depends on the animals entering a state of metabolic rate depression in order to maintain an appropriate energy production-consumption balance during periods of limited oxygen availability. This study investigated the kinetic, physical, and regulatory properties of pyruvate kinase (PK), which catalyzes the final reaction of aerobic glycolysis, from foot muscle of L. littorea to determine if the enzyme is differentially regulated in response to anoxia and freezing exposure. PK purified from foot muscle of anoxic animals exhibited a lower affinity for its substrate phosphoenolpyruvate than PK from control and frozen animals. PK from anoxic animals was also more sensitive to a number of allosteric regulators, including alanine and aspartate, which are key anaerobic metabolites in L. littorea. Furthermore, PK purified from anoxic and frozen animals exhibited greater stability compared to the non-stressed control animals, determined through high-temperature incubation studies. Phosphorylation of threonine and tyrosine residues was also assessed and demonstrated that levels of threonine phosphorylation of PK from anoxic animals were significantly higher than those of PK from control and frozen animals, suggesting a potential mechanism for regulating PK activity. Taken together, these results suggest that PK plays a role in suppressing metabolic rate in these animals during environmental anoxia exposure.


Assuntos
Organismos Aquáticos/enzimologia , Proteínas Musculares , Músculos/enzimologia , Piruvato Quinase , Caramujos/enzimologia , Animais , Proteínas Musculares/química , Proteínas Musculares/isolamento & purificação , Piruvato Quinase/química , Piruvato Quinase/isolamento & purificação
7.
Cell Signal ; 75: 109763, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32871209

RESUMO

Pronounced heterothermic responses are relatively rare among birds. Along with taxa such as hummingbirds and caprimulgids, the order Coliiformes (mousebirds) is known to possess the physiological capacity for torpor. During torpor, body temperature is greatly reduced and a bird becomes unresponsive to external stimuli until ambient temperatures return to more favorable conditions. Under such conditions, these birds are forced to rely only on their internal fuel storage for energy and show great reduction in metabolic rates by decreasing energy-expensive processes. This study investigated the role of the key insulin-Akt signaling kinase pathway involved in regulating energy metabolism and protein translation in the liver, kidney, heart, skeletal muscle, and brain of the speckled mousebird (Colius striatus). The degree of phosphorylation of well-conserved target residues with important regulatory function was examined in both the euthermic control and torpid birds. The results demonstrated marked differences in responses between the tissues with decreases in RPS6 S235/236 phosphorylation in the kidney (0.52 fold of euthermic) and muscle (0.29 fold of euthermic) as well as decreases in GS3K3ß S9 in muscle (0.60 fold of euthermic) and GSK3α S21 (0.71 fold of euthermic) phosphorylation in kidney during torpor, suggesting a downregulation of this pathway. Interestingly, the liver demonstrated an increase in RPS6 S235/236 (2.89 fold increase) and P70S6K T412 (1.44 fold increase) phosphorylation in the torpor group suggesting that protein translation is maintained in this tissue. This study demonstrates that avian torpor is a complex phenomenon and alterations in this signaling pathway follow a tissue specific pattern.


Assuntos
Aves/metabolismo , Metabolismo Energético , Rim/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Torpor , Animais , Fosforilação , Biossíntese de Proteínas , Temperatura
8.
Artigo em Inglês | MEDLINE | ID: mdl-32592750

RESUMO

The Richardson's ground squirrel (Urocitellus richardsonii) undergoes numerous changes to its core physiological and metabolic processes over the months it spends hibernating during the winter. Winter torpor is characterized by an overall reduction in metabolic rate, a lowering of core body temperature, and a switch to preferential consumption of lipids instead of carbohydrates. The alterations in central metabolic pathways are often accomplished by the regulation of key enzymes within the glycolytic pathway. The regulation of one such enzyme, pyruvate kinase (PK), was characterized in the present study in the liver of torpid ground squirrels. PK was purified from liver tissue of euthermic and hibernating U. richardsonii and subsequently assayed to determine the kinetic parameters of the enzyme at 22° and 5 °C. Additional studies assessed the relative degree of post-translational modifications in PK from control and hibernating ground squirrels. The results from this study demonstrated significantly lowered maximal activity in the hibernating form of the enzyme and decreased sensitivity to the activator FBP when compared to the control. Immunoblotting demonstrated increased relative serine and threonine phosphorylation (~3 fold) in the hibernating PK. Taken together these results suggest that phosphorylation of liver PK is an important step in inhibiting glycolytic activity in the liver of the Richardson's ground squirrel during torpor.


Assuntos
Hibernação , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Piruvato Quinase/metabolismo , Sciuridae/metabolismo , Animais , Frutosedifosfatos/metabolismo , Glicólise , Fosforilação , Piruvato Quinase/química , Estações do Ano
9.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140448, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445798

RESUMO

The citric acid cycle (CAC) is a central metabolic pathway that links carbohydrate, lipid, and amino acid metabolism in the mitochondria and, hence, is a crucial target for metabolic regulation. The α-ketoglutarate dehydrogenase complex (KGDC) is the rate-limiting step of the CAC, the three enzymes of the complex catalyzing the transformation of α-ketoglutarate to succinyl-CoA with the release of CO2 and reduction of NAD to NADH. During hibernation, the metabolic rate of small mammals is suppressed, in part due to reduced body temperature but also active controls that suppress aerobic metabolism. The present study examined KGDC regulation during hibernation in skeletal muscle of the Richardson's ground squirrel (Urocitellus richardsonii). The KGDC was partially purified from skeletal muscle of euthermic and hibernating ground squirrels and kinetic properties were evaluated at 5°, 22°, and 37 °C. KGDC from hibernator muscle at all temperatures compared with euthermic controls exhibited a decreased affinity for CoA as well as reduced activation by Ca2+ ions at 5 °C from both euthermic and hibernating conditions. Co-immunoprecipitation was employed to isolate the E1, E2 and E3 enzymes of the complex (OGDH, DLST, DLD) to allow immunoblot analysis of post-translational modifications (PTMs) of each enzyme. The results showed elevated phospho-tyrosine content on all three enzymes during hibernation as well as increased ADP-ribosylation and succinylation of hibernator OGDH. Taken together these results show that the KGDC is regulated by posttranslational modifications and temperature effects to reorganize enzyme activity and mitochondrial function to aid suppression of mitochondrial activity during hibernation.


Assuntos
Hibernação/fisiologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Sciuridae/metabolismo , Animais , Coenzima A/metabolismo , Cinética , Mamíferos , Mitocôndrias/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Músculos/enzimologia , Músculos/metabolismo , Processamento de Proteína Pós-Traducional , Temperatura
10.
Arch Insect Biochem Physiol ; 102(4): e21618, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31512274

RESUMO

The freeze-tolerant larvae of the goldenrod gall fly (Eurosta solidaginis) undergo substantial alterations to their molecular physiology during the winter including the production of elevated quantities of glycerol and sorbitol, which function as cryoprotectants to survive whole body freezing. Production of these cryoprotectants depends on cytosolic pools of nicotinamide adenine dinucleotide phosphate H (NADPH), a major source being the pentose phosphate pathway (PPP). Glucose-6-phosphate dehydrogenase (G6PDH) mediates the rate-limiting and committed step of the PPP and therefore its molecular properties were explored in larvae sampled from control versus frozen states. G6PDH was purified from control (5°C) and frozen (-15°C) E. solidaginis larvae by a single-step chromatography method utilizing 2',5'-ADP agarose and analyzed to determine its enzymatic parameters. Studies revealed a decrease in Km for G6P in the frozen animals (to 50% of control values) suggesting an increased flux through the PPP. Immunoblotting of the purified enzyme showed differences in the relative extent of several posttranslational modifications, notably ubiquitination (95% decrease in frozen larvae), cysteine nitrosylation (61% decrease), threonine (4.1 fold increase), and serine phosphorylation (59% decrease). Together these data suggested that the increased flux through the PPP needed to generate NADPH for cryoprotectants synthesis is regulated, at least in part, through posttranslational alterations of G6PDH.


Assuntos
Congelamento , Glucosefosfato Desidrogenase/metabolismo , Tephritidae/metabolismo , Animais , Crioprotetores , Glucosefosfato Desidrogenase/genética , Larva/enzimologia , Larva/genética , Larva/metabolismo , Via de Pentose Fosfato , Tephritidae/enzimologia , Tephritidae/genética , Tephritidae/crescimento & desenvolvimento , Ubiquitinação
11.
Mol Cell Biochem ; 455(1-2): 29-39, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30421312

RESUMO

Carbamoyl phosphate synthetase I (CPS1) represents an important regulatory enzyme of the urea cycle that mediates the ATP-driven reaction ligating ammonium, carbonate, and phosphate to form carbamoyl phosphate. The freeze-tolerant wood frog (Rana sylvatica or Lithobates sylvaticus) accumulates high concentrations of urea during bouts of freezing to detoxify any ammonia generated and to contribute as a cryoprotectant thereby helping to avoid freeze damage to cells. Purification of CPS1 to homogeneity from wood frog liver was performed in control and frozen wood frogs by a three-step chromatographic process. The affinity of CPS1 for its three substrates was tested in the purified control and freeze-exposed enzyme under a variety of conditions including the presence and absence of the natural cryoprotectants urea and glucose. The results demonstrated that affinity for ammonium was higher in the freeze-exposed CPS1 (1.26-fold) and that with the addition of 400 mM glucose it displayed higher affinity for ATP (1.30-fold) and the obligate activator N-acetylglutamate (1.24-fold). Denaturation studies demonstrated the freeze-exposed enzyme was less thermally stable than the control with an unfolding temperature approximately 1.5 °C lower (52.9 °C for frozen and 54.4 °C for control). The control form of CPS1 had a significantly higher degree of glutarylated lysine residues (1.42-fold increase) relative to the frozen. The results suggest that CPS1 activation and maintenance of urea cycle activity despite the hypometabolic conditions associated with freezing are important aspects in the metabolic survival strategies of the wood frog.


Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/isolamento & purificação , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/isolamento & purificação , Congelamento , Fígado/enzimologia , Aclimatação , Animais , Ranidae
12.
IUBMB Life ; 70(12): 1260-1266, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230676

RESUMO

Mitochondria are not just the powerhouses of the cell; these 'end of function' organelles are crucial components of cellular physiology and influence many central metabolic and signaling pathways that support complex multicellular life. Not surprisingly, these organelles play vital roles in adaptations for extreme survival strategies including hibernation and freeze tolerance, both of which are united by requirements for a strong reduction and reprioritization of metabolic processes. To facilitate metabolic rate depression, adaptations of all aspects of mitochondrial function are required, including; energetics, physiology, abundance, gene regulation, and enzymatic controls. This review discusses these factors with a focus on the stress-specific nature of mitochondrial genes and transcriptional regulators, and processes including apoptosis and chaperone protein responses. We also analyze the regulation of glutamate dehydrogenase and pyruvate dehydrogenase, central mitochondrial enzymes involved in coordinating the shifts in metabolic fuel use associated with extreme survival strategies. Finally, an emphasis is given to the novel mitochondrial research areas of microRNAs, peptides, epigenetics, and gaseous mediators and their potential roles in facilitating hypometabolism. © 2018 IUBMB Life, 70(12):1260-1266, 2018.


Assuntos
Adaptação Fisiológica/genética , Metabolismo Energético/genética , Hibernação/genética , Mitocôndrias/genética , Animais , Epigênese Genética , Regulação da Expressão Gênica/genética , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , MicroRNAs/genética , Piruvato Sintase/genética , Piruvato Sintase/metabolismo
13.
Arch Biochem Biophys ; 636: 90-99, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29056417

RESUMO

Glutamate dehydrogenase (GDH) represents a critical enzyme catalyzing the reaction spanning amino acid catabolism, the Krebs cycle, and urea production in the wood frog. GDH breaks down glutamate and NAD+ to generate α-ketoglutaric acid (α-KG), NADH and ammonium that can be metabolized to form urea. Purification of GDH from control and frozen male wood frog livers was performed using a two-step column chromatography procedure with a cation exchange column and a GTP-agarose affinity column. Analysis of kinetic parameters of the purified GDH showed several notable differences between the control and stress. Under standard assay conditions, the affinity of GDH for its substrates was significantly higher for the freeze-exposed enzyme than for the control (glutamate Km: 41% decrease, NAD+ Km: 40% decrease). The maximal activity for the control enzyme was also noted to be lower than the frozen. This suggests that the frozen form of the GDH was activated relative to the control form. Western blot analysis of common posttranslational modifications indicated that the frozen enzyme had a lower degree of acetylation and ADP-ribosylation than its control counterpart. These results suggest that GDH is regulated in the wood frog liver by means of altering post-translational modifications in response to freezing.


Assuntos
ADP-Ribosilação , Proteínas de Anfíbios/metabolismo , Congelamento , Glutamato Desidrogenase/metabolismo , Fígado/enzimologia , Acetilação , Proteínas de Anfíbios/química , Animais , Glutamato Desidrogenase/química , Fígado/química , Ranidae
14.
Neurotoxicology ; 59: 98-104, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28192093

RESUMO

Previous studies have shown that di(2-ethylhexyl) phthalate (DEHP) exposure impairs the normal development of pre- and post-synaptic elements of the male, but not female, rat hippocampus. While males seem to be vulnerable to the neurodevelopmental deficits resulting from DEHP exposure, females appear to show a protective response. The purpose of the present study was to characterize hippocampal microRNAs in female and male rats exposed to DEHP to assess whether any patterns emerged that would be consistent with vulnerability in males and resilience in females. Male and female rats were treated with 0, 1, 10, or 20mg/kg of DEHP by intraperitoneal injections from postnatal day 16 (PND16) - PND22 and brains were removed and flash frozen on PND78. A group of 85 microRNAs which have been previously shown to play a role in the development and maintenance of hippocampal neurons was assessed with RT-qPCR. In response to DEHP exposure, there were 19 microRNAs that increased in females and 52 that decreased in males. The strongest microRNA response in females occurred in conjunction with the 10mg/kg of DEHP dose, whereas suppression of microRNAs in males appeared to be dose-dependent. Select hippocampal microRNAs (such as miR-132-3p and miR-191-5p), previously shown to regulate dendrite morphology, were modulated by DEHP exposure in this study. The results suggest that DEHP exposure has the potential to regulate microRNAs in a sex-specific manner which may interfere with proper hippocampal development in males and preserve hippocampal development in females.


Assuntos
Dietilexilftalato/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , MicroRNAs/metabolismo , Plastificantes/farmacologia , Caracteres Sexuais , Fatores Etários , Animais , Relação Dose-Resposta a Droga , Feminino , Hipocampo/metabolismo , Humanos , Recém-Nascido , Masculino , Ratos
15.
Artigo em Inglês | MEDLINE | ID: mdl-27544614

RESUMO

Lactate dehydrogenase (LDH), the terminal enzyme of anaerobic glycolysis, has a crucial role in sustaining ATP production by glycolysis during periods of anoxia via regenerating NAD+ through the production of lactate. The present study examined the effects of prolonged (20h) anoxic submergence on LDH from the tail muscle of an anoxia-tolerant crayfish (Orconectes virilis). LDH was purified to homogeneity from tail muscle of both aerobic control and anoxic crayfish in a three step process. Analysis of the kinetic parameters and the stability of LDH showed that the Vmax in the pyruvate-reducing direction was significantly higher for the enzyme from anoxic crayfish whereas in the lactate-oxidizing direction the Vmax was significantly higher for the control enzyme. Differential scanning fluorimetry was used to assess thermal unfolding of crayfish LDH. The results showed that the enzyme from control muscle had a significantly higher melting temperature (greater thermal stability) than the anoxic enzyme form, suggesting that there was a structural difference between the two enzyme forms. Immunoblotting of purified LDH implicated post-translational modification as the reason for this difference; purified LDH from aerobic control crayfish showed significantly higher amounts of serine/threonine phosphorylation than did the anoxic enzyme form. This study provides evidence for anoxia-induced modifications of crayfish muscle LDH that may contribute significantly to modulating enzyme function under anoxic conditions.


Assuntos
Astacoidea/enzimologia , Hipóxia/metabolismo , L-Lactato Desidrogenase/metabolismo , Músculos/enzimologia , Cauda , Animais , Astacoidea/metabolismo , Estabilidade Enzimática , Cinética , L-Lactato Desidrogenase/química , Fosforilação , Processamento de Proteína Pós-Traducional
16.
Anal Biochem ; 508: 114-7, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27296634

RESUMO

The effect of protein stability on kinetic function is monitored with many techniques that often require large amounts of expensive substrates and specialized equipment not universally available. We present differential scanning fluorimetry (DSF), a simple high-throughput assay performed in real-time thermocyclers, as a technique for analysis of protein unfolding. Furthermore, we demonstrate a correlation between the half-maximal rate of protein unfolding (Knd), and protein unfolding by urea (I50). This demonstrates that DSF methods can determine the structural stability of an enzyme's active site and can compare the relative structural stability of homologous enzymes with a high degree of sequence similarity.


Assuntos
Técnicas de Química Analítica/métodos , Fluorometria , Ureia/análise , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Desnaturação Proteica , Fatores de Tempo , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA