RESUMO
Increasing antibiotic resistance of Neisseria gonorrhoeae, the causative agent of gonorrhea, is a growing global concern that has renewed vaccine development efforts. The gonococcal OmpA protein was previously identified as a vaccine candidate due to its surface exposure, conservation, stable expression, and involvement in host-cell interactions. We previously demonstrated that the transcription of ompA can be activated by the MisR/MisS two-component system. Interestingly, earlier work suggested that the availability of free iron also influences ompA expression, which we confirmed in this study. In the present study, we found that iron regulation of ompA was independent of MisR and searched for additional regulators. A DNA pull-down assay with the ompA promoter from gonococcal lysates obtained from bacteria grown in the presence or absence of iron identified an XRE (Xenobiotic Response Element) family member protein encoded by NGO1982. We found that an NGO1982 null mutant of N. gonorrhoeae strain FA19 displayed a reduced level of ompA expression compared to the wild-type (WT) parent strain. Given this regulation, and the capacity of this XRE-like protein to regulate a gene involved in peptidoglycan biosynthesis (ltgA), along with its presence in other Neisseria sp., we termed the NGO1982-encoded protein as NceR (Neisseria cell envelope regulator). Critically, results from DNA-binding studies indicated that NceR regulates ompA through a direct mechanism. Thus, ompA expression is subject to both iron-dependent (NceR) and -independent (MisR/MisS) pathways. Hence, levels of the vaccine antigen candidate OmpA in circulating gonococcal strains could be influenced by transcriptional regulatory systems and the availability of iron. IMPORTANCE Herein, we report that the gene encoding a conserved gonococcal surface-exposed vaccine candidate (OmpA) is activated by a heretofore undescribed XRE family transcription factor, which we term NceR. We report that NceR regulation of ompA expression in N. gonorrhoeae is mediated by an iron-dependent mechanism, while the previously described MisR regulatory system is iron-independent. Our study highlights the importance of defining the complexity of coordinated genetic and physiologic systems that regulate genes encoding vaccine candidates to better understand their availability during infection.
Assuntos
Gonorreia , Neisseria gonorrhoeae , Humanos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Ativação Transcricional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Gonorreia/microbiologia , Ferro/metabolismo , DNA/metabolismoRESUMO
Inflammasome molecules make up a family of receptors that typically function to initiate a proinflammatory response upon infection by microbial pathogens. Dysregulation of inflammasome activity has been linked to unwanted chronic inflammation, which has also been implicated in certain autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and related animal models. Classical inflammasome activation-dependent events have intrinsic and extrinsic effects on both innate and adaptive immune effectors, as well as resident cells in the target tissue, which all can contribute to an autoimmune response. Recently, inflammasome molecules have also been found to regulate the differentiation and function of immune effector cells independent of classical inflammasome-activated inflammation. These alternative functions for inflammasome molecules shape the nature of the adaptive immune response, that in turn can either promote or suppress the progression of autoimmunity. In this review we will summarize the roles of inflammasome molecules in regulating self-tolerance and the development of autoimmunity.
Assuntos
Doenças Autoimunes , Inflamassomos , Animais , Autoimunidade , Inflamação , Tolerância a Antígenos PrópriosRESUMO
TonB-dependent transporters (TDTs) are essential proteins for metal acquisition, an important step in the growth and pathogenesis of many pathogens, including Neisseria gonorrhoeae, the causative agent of gonorrhea. There is currently no available vaccine for gonorrhea; TDTs are being investigated as vaccine candidates because they are highly conserved and expressed in vivo. Transferrin binding protein A (TbpA) is an essential virulence factor in the initiation of experimental infection in human males and functions by acquiring iron upon binding to host transferrin (human transferrin [hTf]). The loop 3 helix (L3H) is a helix finger that inserts into the hTf C-lobe and is required for hTf binding and subsequent iron acquisition. This study identified and characterized the first TbpA single-point substitutions resulting in significantly decreased hTf binding and iron acquisition, suggesting that the helix structure is more important than charge for hTf binding and utilization. The tbpA D355P ΔtbpB and tbpA A356P ΔtbpB mutants demonstrated significantly reduced hTf binding and impaired iron uptake from Fe-loaded hTf; however, only the tbpA A356P ΔtbpB mutant was able to grow when hTf was the sole source of iron. The expression of tbpB was able to restore function in all tbpA mutants. These results implicate both D355 and A356 in the key binding, extraction, and uptake functions of gonococcal TbpA.
Assuntos
Gonorreia , Neisseria meningitidis , Proteína A de Ligação a Transferrina , Masculino , Humanos , Proteína A de Ligação a Transferrina/genética , Proteína A de Ligação a Transferrina/química , Proteína A de Ligação a Transferrina/metabolismo , Neisseria gonorrhoeae/metabolismo , Transferrina/genética , Transferrina/metabolismo , Mutação Puntual , Receptores da Transferrina/genética , Ferro/metabolismo , Neisseria meningitidis/metabolismoRESUMO
Transition metals are essential for metalloprotein function among all domains of life. Humans utilize nutritional immunity to limit bacterial infections, employing metalloproteins such as hemoglobin, transferrin, and lactoferrin across a variety of physiological niches to sequester iron from invading bacteria. Consequently, some bacteria have evolved mechanisms to pirate the sequestered metals and thrive in these metal-restricted environments. Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, causes devastating disease worldwide and is an example of a bacterium capable of circumventing human nutritional immunity. Via production of specific outer-membrane metallotransporters, N. gonorrhoeae is capable of extracting iron directly from human innate immunity metalloproteins. This review focuses on the function and expression of each metalloprotein at gonococcal infection sites, as well as what is known about how the gonococcus accesses bound iron.