Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
NPJ Genom Med ; 8(1): 28, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770509

RESUMO

Elevated impulsivity is a key component of attention-deficit hyperactivity disorder (ADHD), bipolar disorder and juvenile myoclonic epilepsy (JME). We performed a genome-wide association, colocalization, polygenic risk score, and pathway analysis of impulsivity in JME (n = 381). Results were followed up with functional characterisation using a drosophila model. We identified genome-wide associated SNPs at 8q13.3 (P = 7.5 × 10-9) and 10p11.21 (P = 3.6 × 10-8). The 8q13.3 locus colocalizes with SLCO5A1 expression quantitative trait loci in cerebral cortex (P = 9.5 × 10-3). SLCO5A1 codes for an organic anion transporter and upregulates synapse assembly/organisation genes. Pathway analysis demonstrates 12.7-fold enrichment for presynaptic membrane assembly genes (P = 0.0005) and 14.3-fold enrichment for presynaptic organisation genes (P = 0.0005) including NLGN1 and PTPRD. RNAi knockdown of Oatp30B, the Drosophila polypeptide with the highest homology to SLCO5A1, causes over-reactive startling behaviour (P = 8.7 × 10-3) and increased seizure-like events (P = 6.8 × 10-7). Polygenic risk score for ADHD genetically correlates with impulsivity scores in JME (P = 1.60 × 10-3). SLCO5A1 loss-of-function represents an impulsivity and seizure mechanism. Synaptic assembly genes may inform the aetiology of impulsivity in health and disease.

2.
Brain Commun ; 5(3): fcad182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361715

RESUMO

Reliable definitions, classifications and prognostic models are the cornerstones of stratified medicine, but none of the current classifications systems in epilepsy address prognostic or outcome issues. Although heterogeneity is widely acknowledged within epilepsy syndromes, the significance of variation in electroclinical features, comorbidities and treatment response, as they relate to diagnostic and prognostic purposes, has not been explored. In this paper, we aim to provide an evidence-based definition of juvenile myoclonic epilepsy showing that with a predefined and limited set of mandatory features, variation in juvenile myoclonic epilepsy phenotype can be exploited for prognostic purposes. Our study is based on clinical data collected by the Biology of Juvenile Myoclonic Epilepsy Consortium augmented by literature data. We review prognosis research on mortality and seizure remission, predictors of antiseizure medication resistance and selected adverse drug events to valproate, levetiracetam and lamotrigine. Based on our analysis, a simplified set of diagnostic criteria for juvenile myoclonic epilepsy includes the following: (i) myoclonic jerks as mandatory seizure type; (ii) a circadian timing for myoclonia not mandatory for the diagnosis of juvenile myoclonic epilepsy; (iii) age of onset ranging from 6 to 40 years; (iv) generalized EEG abnormalities; and (v) intelligence conforming to population distribution. We find sufficient evidence to propose a predictive model of antiseizure medication resistance that emphasises (i) absence seizures as the strongest stratifying factor with regard to antiseizure medication resistance or seizure freedom for both sexes and (ii) sex as a major stratifying factor, revealing elevated odds of antiseizure medication resistance that correlates to self-report of catamenial and stress-related factors including sleep deprivation. In women, there are reduced odds of antiseizure medication resistance associated with EEG-measured or self-reported photosensitivity. In conclusion, by applying a simplified set of criteria to define phenotypic variations of juvenile myoclonic epilepsy, our paper proposes an evidence-based definition and prognostic stratification of juvenile myoclonic epilepsy. Further studies in existing data sets of individual patient data would be helpful to replicate our findings, and prospective studies in inception cohorts will contribute to validate them in real-world practice for juvenile myoclonic epilepsy management.

3.
Sci Rep ; 12(1): 2785, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190554

RESUMO

Juvenile myoclonic epilepsy (JME) is a common idiopathic generalised epilepsy with variable seizure prognosis and sex differences in disease presentation. Here, we investigate the combined epidemiology of sex, seizure types and precipitants, and their influence on prognosis in JME, through cross-sectional data collected by The Biology of Juvenile Myoclonic Epilepsy (BIOJUME) consortium. 765 individuals met strict inclusion criteria for JME (female:male, 1.8:1). 59% of females and 50% of males reported triggered seizures, and in females only, this was associated with experiencing absence seizures (OR = 2.0, p < 0.001). Absence seizures significantly predicted drug resistance in both males (OR = 3.0, p = 0.001) and females (OR = 3.0, p < 0.001) in univariate analysis. In multivariable analysis in females, catamenial seizures (OR = 14.7, p = 0.001), absence seizures (OR = 6.0, p < 0.001) and stress-precipitated seizures (OR = 5.3, p = 0.02) were associated with drug resistance, while a photoparoxysmal response predicted seizure freedom (OR = 0.47, p = 0.03). Females with both absence seizures and stress-related precipitants constitute the prognostic subgroup in JME with the highest prevalence of drug resistance (49%) compared to females with neither (15%) and males (29%), highlighting the unmet need for effective, targeted interventions for this subgroup. We propose a new prognostic stratification for JME and suggest a role for circuit-based risk of seizure control as an avenue for further investigation.


Assuntos
Epilepsia Mioclônica Juvenil , Caracteres Sexuais , Adolescente , Adulto , Criança , Estudos Transversais , Resistência a Medicamentos , Epilepsias Mioclônicas , Epilepsia Tipo Ausência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Epilepsia Mioclônica Juvenil/tratamento farmacológico , Epilepsia Mioclônica Juvenil/epidemiologia , Epilepsia Mioclônica Juvenil/etiologia , Epilepsia Mioclônica Juvenil/fisiopatologia , Transtornos de Fotossensibilidade , Prognóstico , Convulsões , Adulto Jovem
4.
Ann Clin Transl Neurol ; 8(1): 138-152, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264519

RESUMO

OBJECTIVE: Impulsivity is a multidimensional construct that can predispose to psychopathology. Meta-analysis demonstrates an association between response impulsivity and Juvenile Myoclonic Epilepsy (JME), a common genetic generalized epilepsy. Here, we test the hypotheses that trait impulsivity is (i) elevated in JME compared to controls; (ii) moderated by specific seizure characteristics; and (iii) associated with psychiatric adverse effects of antiepileptic drugs (AEDs). METHODS: 322 participants with JME and 126 age and gender-matched controls completed the Barratt's Impulsiveness Scale (BIS-brief) alongside information on seizure history and AED use. We compared group BIS-brief scores and assessed associations of JME BIS-brief scores with seizure characteristics and AED adverse effects. RESULTS: The mean BIS-brief score in JME was 18.1 ± 4.4 compared with 16.2 ± 4.1 in controls (P = 0.0007). Elevated impulsivity was associated with male gender (P = 0.027), frequent absence seizures (P = 0.0004) and lack of morning predominance of myoclonus (P = 0.008). High impulsivity significantly increased the odds of a psychiatric adverse event on levetiracetam (P = 0.036), but not any other psychiatric or somatic adverse effects. INTERPRETATION: Trait impulsivity is elevated in JME and comparable to scores in personality and neurotic disorders. Increased seizure frequency and absence of circadian seizure pattern moderate BIS score, suggesting disruption of both cortico-striatal and thalamocortical networks as a shared mechanism between seizures and impulsivity in JME. These findings warrant consideration of impulsivity as a distinct target of intervention, and as a stratifying factor for AED treatment in JME, and perhaps other types of epilepsy. The role of impulsivity in treatment adherence and psychosocial outcome requires further investigation.


Assuntos
Comportamento Impulsivo , Epilepsia Mioclônica Juvenil/psicologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem
5.
PLoS One ; 15(6): e0234910, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559200

RESUMO

Aging in mammals is the gradual decline of an organism's physical, mental, and physiological capacity. Aging leads to increased risk for disease and eventually to death. Here, we show that Brd2 haploinsufficiency (Brd2+/-) extends lifespan and increases healthspan in C57B6/J mice. In Brd2+/- mice, longevity is increased by 23% (p<0.0001), and, relative to wildtype animals (Brd2+/+), cancer incidence is reduced by 43% (p<0.001). In addition, relative to age-matched wildtype mice, Brd2 heterozygotes show healthier aging including: improved grooming, extended period of fertility, and lack of age-related decline in kidney function and morphology. Our data support a role for haploinsufficiency of Brd2 in promoting healthy aging. We hypothesize that Brd2 affects aging by protecting against the accumulation of molecular and cellular damage. Given the recent advances in the development of BET inhibitors, our research provides impetus to test drugs that target BRD2 as a way to understand and treat/prevent age-related diseases.


Assuntos
Longevidade/genética , Fatores de Transcrição/genética , Animais , Feminino , Fertilidade , Asseio Animal , Haploinsuficiência , Rim/crescimento & desenvolvimento , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Epilepsia ; 61(5): 892-902, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32301507

RESUMO

OBJECTIVE: BRD2 is a human gene repeatedly linked to and associated with juvenile myoclonic epilepsy (JME). Here, we define the developmental stage when increased seizure susceptibility first manifests in heterozygous Brd2+/- mice, an animal model of JME. We wanted to determine (1) whether seizure susceptibility correlates with the proven decrease of γ-aminobutyric acidergic (GABAergic) neuron numbers and (2) whether the seizure phenotype can be affected by sex hormones. METHODS: Heterozygous (Brd2+/-) and wild-type (wt) mice of both sexes were tested for flurothyl-induced seizure susceptibility at postnatal day 15 (P15; wt, n = 13; Brd2+/-, n = 20), at P30 (wt, n = 20; Brd2+/-, n = 20), and in adulthood (5-6 months of age; wt, n = 10; Brd2+/-, n = 12). We measured latency to clonic and tonic-clonic seizure onset (flurothyl threshold). We also compared relative density of parvalbumin-positive (PVA+) and GAD67+ GABA neurons in the striatum and primary motor (M1) neocortex of P15 (n = 6-13 mice per subgroup) and P30 (n = 7-10 mice per subgroup) mice. Additional neonatal Brd2+/- mice were injected with testosterone propionate (females) or formestane (males) and challenged with flurothyl at P30. RESULTS: P15 Brd2+/- mice showed no difference in seizure susceptibility compared to P15 wt mice. However, even at this early age, Brd2+/- mice showed fewer PVA+ neurons in the striatum and M1 neocortex. Compared to wt, the striatum in Brd2+/- mice showed an increased proportion of immature PVA+ neurons, with smaller cell bodies and limited dendritic arborization. P30 Brd2+/- mice displayed increased susceptibility to flurothyl-induced clonic seizures compared to wt. Both genotype and sex strongly influenced the density of PVA+ neurons in the striatum. Susceptibility to clonic seizures remained increased in adult Brd2+/- mice, and additionally there was increased susceptibility to tonic-clonic seizures. In P30 females, neonatal testosterone reduced the number of flurothyl-induced clonic seizures. SIGNIFICANCE: A decrease in striatal PVA+ GABAergic neurons developmentally precedes the onset of increased seizure susceptibility and likely contributes to the expression of the syndrome.


Assuntos
Flurotila/farmacologia , Epilepsia Mioclônica Juvenil/patologia , Neurônios/patologia , Parvalbuminas/metabolismo , Convulsões/induzido quimicamente , Androstenodiona/análogos & derivados , Androstenodiona/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Epilepsia Mioclônica Juvenil/induzido quimicamente , Neurônios/efeitos dos fármacos , Convulsões/patologia , Propionato de Testosterona/farmacologia , Fatores de Transcrição/metabolismo
8.
Epilepsia ; 60(3): 539-546, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30719716

RESUMO

OBJECTIVE: Genetic generalized epilepsy (GGE) consists of epileptic syndromes with overlapping symptoms and is considered to be largely genetic. Previous cosegregation and association studies have pointed to malic enzyme 2 (ME2) as a candidate susceptibility gene for adolescent-onset GGE. In this article, we present new evidence supporting ME2's involvement in GGE. METHODS: To definitively test ME2's influence on GGE, we used 3 different approaches. First, we compared a newly recruited GGE cohort with an ethnically matched reference sample from 1000 Genomes Project, using an efficient test of association (POPFAM+). Second, we used POPFAM+ to reanalyze a previously collected data set, wherein the original controls were replaced with ethnically matched reference samples to minimize the confounding effect of population stratification. Third, in a post hoc analysis of expression data from healthy human prefrontal cortex, we identified single nucleotide polymorphisms (SNPs) influencing ME2 messenger RNA (mRNA) expression; and then we tested those same SNPs for association with GGE in a large case-control cohort. RESULTS: First, in the analysis of our newly recruited GGE Cohort, we found a strong association between an ME2 SNP and GGE (P = 0.0006 at rs608781). Second, in the reanalysis of previously collected data, we confirmed the Greenberg et al (2005) finding of a GGE-associated ME2 risk haplotype. Third, in the post hoc ME2 expression analysis, we found evidence for a possible link between GGE and ME2 gene expression in human brain. SIGNIFICANCE: Overall, our research, and the research of others, provides compelling evidence that ME2 influences susceptibility to adolescent-onset GGE.


Assuntos
Epilepsia Generalizada/genética , Predisposição Genética para Doença/genética , Malato Desidrogenase/genética , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Haplótipos/genética , Humanos , Malato Desidrogenase/fisiologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
9.
Epilepsia ; 59(5): 1011-1019, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29608786

RESUMO

OBJECTIVE: Juvenile myoclonic epilepsy (JME) is a common adolescent-onset genetic generalized epilepsy (GGE) syndrome. Multiple linkage and association studies have found that BRD2 influences the expression of JME. The BRD2-JME connection is further corroborated by our murine model; Brd2 haploinsufficiency produces characteristics that typify the clinical hallmarks of JME. Neither we, nor several large-scale studies of JME, found JME-related BRD2 coding mutations. Therefore, we investigated noncoding BRD2 regions, seeking the origin of BRD2's JME influence. BRD2's promoter harbors a JME-associated single nucleotide polymorphism (rs3918149) and a CpG (C-phosphate-G dinucleotides) island (CpG76), making it a potential "hotspot" for JME-associated epigenetic variants. Methylating promoter CpG sites causes gene silencing, often resulting in reduced gene expression. We tested for differences in DNA methylation at CpG76 in 3 different subgroups: (1) JME patients versus their unaffected family members, (2) JME versus patients with other forms of GGE, and (3) Caucasian versus non-Caucasian JME patients. METHODS: We used DNA pyrosequencing to analyze the methylation status of 10 BRD2 promoter CpG sites in lymphoblastoid cells from JME patients of Caucasian and non-Caucasian origin, unaffected family members, and also non-JME GGE patients. We also measured global methylation levels and DNA methyl transferase 1 (DNMT1) transcript expression in JME families by standard methods. RESULTS: CpG76 is highly methylated in JME patients compared to unaffected family members. In families with non-JME GGE, we found no relationship between promoter methylation and epilepsy. In non-Caucasian JME families, promoter methylation was mostly not associated with epilepsy. This makes the BRD2 promoter a JME-specific, ethnicity-specific, differentially methylated region. Global methylation was constant across groups. SIGNIFICANCE: BRD2 promoter methylation in JME, and the lack of methylation in unaffected relatives, in non-JME GGE patients, and in non-Caucasian JME, demonstrate that methylation specificity is a possible seizure susceptibility motif in JME risk and suggests JME therapeutics targeting BRD2.


Assuntos
Metilação de DNA/genética , Epilepsias Mioclônicas/genética , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética , Criança , Feminino , Humanos , Masculino , Fatores de Transcrição , População Branca/genética
10.
PLoS One ; 13(2): e0192696, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444168

RESUMO

There is a growing body of evidence suggesting that type 1 diabetes (T1D) is a genetically heterogeneous disease. However, the extent of this heterogeneity, and what observations may distinguish different forms, is unclear. One indicator may be T1D-related microvascular complications (MVCs), which are familial, but occur in some families, and not others. We tested the hypothesis that T1D plus MVC is genetically distinct from T1D without MCV. We studied 415 families (2,462 individuals, 896 with T1D) using genome-wide linkage analysis, comparing families with and without MVC. We also tested for interaction between identified loci and alleles at the HLA-DRB1 locus. We found significant linkage scores at 1p36.12, 1q32.1, 8q21.3, 12p11.21 and 22q11.21. In all regions except 1p36.12, linkage scores differed between MVC-based phenotype groups, suggesting that families with MVCs express different genetic influences than those without. Our linkage results also suggested gene-gene interaction between the above putative loci and the HLA region; HLA-based strata produced significantly increased linkage scores in some strata, but not others within a phenotype group. We conclude that families with type 1 diabetes plus MVCs are genetically different from those with diabetes alone.


Assuntos
Complicações do Diabetes/genética , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Mapeamento Cromossômico , Ligação Genética , Humanos
11.
Methods Mol Biol ; 1706: 381-397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423810

RESUMO

For many years, family-based studies using linkage analysis represented the primary approach for identifying disease genes. This strategy is responsible for the identification of the greatest number of genes proven to cause human disease. However, technical advancements in next generation sequencing and high throughput genotyping, coupled with the apparent simplicity of association testing, led to the rejection of family-based studies and of linkage analysis. At present, genetic association methods, using case-control comparisons, have become the exclusive approach for detecting disease-related genes, particularly those underlying common, complex diseases. In this chapter, we present a historical overview of linkage analysis, including a description of how the approach works, as well as its strengths and weaknesses. We discuss how the transition from family-based studies to population comparison association studies led to a critical loss of information with respect to genetic etiology and inheritance, and we present historical and contemporary examples of linkage analysis "success stories" in identifying genes contributing to the development of human disease. Currently, linkage analysis is re-emerging as a useful approach for identifying disease genes, determining genetic parameters, and resolving genetic heterogeneity. We posit that the combination of linkage analysis, association testing, and high throughput sequencing provides a powerful approach for identifying disease-causing genes.


Assuntos
Regulação da Expressão Gênica , Doenças Genéticas Inatas/genética , Ligação Genética , Técnicas de Genotipagem/métodos , Animais , Doenças Genéticas Inatas/metabolismo , Humanos
12.
Aging Dis ; 8(5): 590-610, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28966804

RESUMO

Among age-related diseases, cardiovascular and cerebrovascular diseases are major causes of death. Vascular dysfunction is a key characteristic of these diseases wherein age is an independent and essential risk factor. The present work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.

13.
Aging Dis ; 8(4): 486-505, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28840062

RESUMO

As with many age-related diseases including vascular dysfunction, age is considered an independent and crucial risk factor. Complicated alterations of structure and function in the vasculature are linked with aging hence, understanding the underlying mechanisms of age-induced vascular pathophysiological changes holds possibilities for developing clinical diagnostic methods and new therapeutic strategies. Here, we discuss the underlying molecular mediators that could be involved in vascular aging, e.g., the renin-angiotensin system and pro-inflammatory factors, metalloproteinases, calpain-1, monocyte chemoattractant protein-1 (MCP-1) and TGFß-1 as well as the potential roles of testosterone and estrogen. We then relate all of these to clinical manifestations such as vascular dementia and stroke in addition to reviewing the existing clinical measurements and potential interventions for age-related vascular dysfunction.

14.
Ann Neurol ; 82(3): 371-384, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28802071

RESUMO

OBJECTIVE: Brain arteriovenous malformations (AVMs) are the most common cause of nontraumatic intracerebral hemorrhage in young adults. The genesis of brain AVM remains enigmatic. We investigated microRNA (miRNA) expression and its contribution to the pathogenesis of brain AVMs. METHODS: We used a large-scale miRNA analysis of 16 samples including AVMs, hemangioblastoma, and controls to identify a distinct AVM miRNA signature. AVM smooth muscle cells (AVMSMCs) were isolated and identified by flow cytometry and immunohistochemistry, and candidate miRNAs were then tested in these cells. Migration, tube formation, and CCK-8-induced proliferation assays were used to test the effect of the miRNAs on phenotypic properties of AVMSMCs. A quantitative proteomics approach was used to identify protein expression changes in AVMSMCs treated with miRNA mimics. RESULTS: A distinct AVM miRNA signature comprising a large portion of lowly expressed miRNAs was identified. Among these miRNAs, miR-137 and miR-195* levels were significantly decreased in AVMs and constituent AVMSMCs. Experimentally elevating the level of these microRNAs inhibited AVMSMC migration, tube formation, and survival in vitro and the formation of vascular rings in vivo. Proteomics showed the protein expression signature of AVMSMCs and identified downstream proteins regulated by miR-137 and miR-195* that were key signaling proteins involved in vessel development. INTERPRETATION: Our results indicate that miR-137 and miR-195* act as vasculogenic suppressors in AVMs by altering phenotypic properties of AVMSMCs, and that the absence of miR-137 and miR-195* expression leads to abnormal vasculogenesis. Ann Neurol 2017;82:371-384.


Assuntos
Fístula Arteriovenosa/patologia , Hemangioblastoma/patologia , Malformações Arteriovenosas Intracranianas/patologia , MicroRNAs/metabolismo , Neovascularização Patológica/patologia , Adolescente , Adulto , Fístula Arteriovenosa/genética , Fístula Arteriovenosa/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Perfilação da Expressão Gênica , Hemangioblastoma/genética , Hemangioblastoma/metabolismo , Humanos , Malformações Arteriovenosas Intracranianas/genética , Malformações Arteriovenosas Intracranianas/metabolismo , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Adulto Jovem
16.
PLoS One ; 11(1): e0146240, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752287

RESUMO

Detecting gene-gene interaction in complex diseases has become an important priority for common disease genetics, but most current approaches to detecting interaction start with disease-marker associations. These approaches are based on population allele frequency correlations, not genetic inheritance, and therefore cannot exploit the rich information about inheritance contained within families. They are also hampered by issues of rigorous phenotype definition, multiple test correction, and allelic and locus heterogeneity. We recently developed, tested, and published a powerful gene-gene interaction detection strategy based on conditioning family data on a known disease-causing allele or a disease-associated marker allele4. We successfully applied the method to disease data and used computer simulation to exhaustively test the method for some epistatic models. We knew that the statistic we developed to indicate interaction was less reliable when applied to more-complex interaction models. Here, we improve the statistic and expand the testing procedure. We computer-simulated multipoint linkage data for a disease caused by two interacting loci. We examined epistatic as well as additive models and compared them with heterogeneity models. In all our models, the at-risk genotypes are "major" in the sense that among affected individuals, a substantial proportion has a disease-related genotype. One of the loci (A) has a known disease-related allele (as would have been determined from a previous analysis). We removed (pruned) family members who did not carry this allele; the resultant dataset is referred to as "stratified." This elimination step has the effect of raising the "penetrance" and detectability at the second locus (B). We used the lod scores for the stratified and unstratified data sets to calculate a statistic that either indicated the presence of interaction or indicated that no interaction was detectable. We show that the new method is robust and reliable for a wide range of parameters. Our statistic performs well both with the epistatic models (false negative rates, i.e., failing to detect interaction, ranging from 0 to 2.5%) and with the heterogeneity models (false positive rates, i.e., falsely detecting interaction, ≤1%). It works well with the additive model except when allele frequencies at the two loci differ widely. We explore those features of the additive model that make detecting interaction more difficult. All testing of this method suggests that it provides a reliable approach to detecting gene-gene interaction.


Assuntos
Epistasia Genética , Ligação Genética , Modelos Genéticos , Estudos de Casos e Controles , Simulação por Computador , Bases de Dados Genéticas , Frequência do Gene/genética , Genes Recessivos , Loci Gênicos , Humanos , Penetrância , Reprodutibilidade dos Testes
17.
Hum Hered ; 81(4): 173-180, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28171865

RESUMO

Genome-wide association studies of common diseases often identify a number of disease-related SNPs that reach highly significant p values but at the same time show very low disease odds ratios (ORs), most <1.5 and many <1.2. Despite their statistical significance, associations involving very low ORs explain little about the genetic contribution to the disease and nothing about disease inheritance. A commonly accepted explanation for very low ORs involves a model of polygenic inheritance, i.e., where the disease being studied is caused by a large number of interacting genes, each gene contributing only a small increment to disease risk. Here we demonstrate the perhaps counterintuitive result that, within a reasonable range of disease population prevalences (≤10%), a pure polygenic model is incompatible with very low ORs, unless very large numbers (hundreds or even thousands) of polygenic loci are involved.


Assuntos
Estudo de Associação Genômica Ampla/normas , Modelos Genéticos , Razão de Chances , Doenças Genéticas Inatas/genética , Humanos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
18.
Mol Neurobiol ; 53(2): 1254-1265, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25616953

RESUMO

Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Globinas/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/biossíntese , Animais , Linhagem Celular , Córtex Cerebral/citologia , Ativação Enzimática , Glucose/deficiência , Ácido Glutâmico/toxicidade , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Lipídeos/química , Camundongos Transgênicos , Modelos Biológicos , Miocárdio/enzimologia , Neuroglobina , Neurônios/metabolismo , Oxigênio , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
J Diabetes Res ; 2015: 694107, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539552

RESUMO

We conducted linkage analysis to follow up earlier work on microvascular complications of type 1 diabetes (T1D). We analyzed 415 families (2,008 individuals) previously genotyped for 402 SNP markers spanning chromosome 6. We did linkage analysis for the phenotypes of retinopathy and nephropathy. For retinopathy, two linkage peaks were mapped: one located at the HLA region and another novel locus telomeric to HLA. For nephropathy, a linkage peak centromeric to HLA was mapped, but the linkage peak telomeric to HLA seen in retinopathy was absent. Because of the strong association of T1D with DRB1*03:01 and DRB1*04:01, we stratified our analyses based on families whose probands were positive for DRB1*03:01 or DRB1*04:01. When analyzing the DRB1*03:01-positive retinopathy families, in addition to the novel telomeric locus, one centromeric to HLA was identified at the same location as the nephropathy peak. When we stratified on DRB1*04:01-positive families, the HLA telomeric peak strengthened but the centromeric peak disappeared. Our findings showed that HLA and non-HLA loci on chromosome 6 are involved in T1D complications' expression. While the HLA region is a major contributor to the expression of T1D, our results suggest an interaction between specific HLA alleles and other loci that influence complications' expression.


Assuntos
Diabetes Mellitus Tipo 1/genética , Angiopatias Diabéticas/genética , Predisposição Genética para Doença , Antígenos HLA/genética , Alelos , Frequência do Gene , Ligação Genética , Loci Gênicos , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
20.
Free Radic Biol Med ; 89: 638-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26462413

RESUMO

Fluid shear stress and uptake of oxidized low-density lipoprotein (ox-LDL) into the vessel wall both contribute to atherosclerosis, but the relationship between shear stress and ox-LDL uptake is unclear. We examined the effects of flow, induced by orbital rotation of bEnd.3 brain endothelial cell cultures for 1 wk, on ox-LDL receptor (LOX-1) protein expression, ox-LDL uptake and ox-LDL toxicity. Orbitally rotated cultures showed no changes in LOX-1 protein expression, ox-LDL uptake or ox-LDL toxicity, compared to stationary cultures. Flow alone does not modify ox-LDL/LOX-1 signaling in bEnd.3 brain endothelial cells in vitro, suggesting that susceptibility of atheroprone vascular sites to lipid accumulation is not due solely to effects of altered flow on endothelium.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores Classe E/metabolismo , Animais , Western Blotting , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Arteriosclerose Intracraniana/metabolismo , Arteriosclerose Intracraniana/fisiopatologia , Camundongos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA