Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593805

RESUMO

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Assuntos
Dano ao DNA , Replicação do DNA , RecQ Helicases , Homeostase do Telômero , Telômero , RecQ Helicases/metabolismo , RecQ Helicases/genética , Humanos , Telômero/metabolismo , Telômero/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimologia , Síndrome de Bloom/patologia , Linhagem Celular Tumoral
2.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554706

RESUMO

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Assuntos
Adenosina Trifosfatases , Replicação do DNA , Instabilidade Genômica , Proteostase , Humanos , Adenosina Trifosfatases/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Células HEK293 , Proteínas de Ciclo Celular/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética
3.
Nature ; 619(7968): 201-208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316655

RESUMO

Break-induced telomere synthesis (BITS) is a RAD51-independent form of break-induced replication that contributes to alternative lengthening of telomeres1,2. This homology-directed repair mechanism utilizes a minimal replisome comprising proliferating cell nuclear antigen (PCNA) and DNA polymerase-δ to execute conservative DNA repair synthesis over many kilobases. How this long-tract homologous recombination repair synthesis responds to complex secondary DNA structures that elicit replication stress remains unclear3-5. Moreover, whether the break-induced replisome orchestrates additional DNA repair events to ensure processivity is also unclear. Here we combine synchronous double-strand break induction with proteomics of isolated chromatin segments (PICh) to capture the telomeric DNA damage response proteome during BITS1,6. This approach revealed a replication stress-dominated response, highlighted by repair synthesis-driven DNA damage tolerance signalling through RAD18-dependent PCNA ubiquitination. Furthermore, the SNM1A nuclease was identified as the major effector of ubiquitinated PCNA-dependent DNA damage tolerance. SNM1A recognizes the ubiquitin-modified break-induced replisome at damaged telomeres, and this directs its nuclease activity to promote resection. These findings show that break-induced replication orchestrates resection-dependent lesion bypass, with SNM1A nuclease activity serving as a critical effector of ubiquitinated PCNA-directed recombination in mammalian cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Telômero , Moldes Genéticos , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Mamíferos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteômica , Rad51 Recombinase/metabolismo , Telômero/genética , Telômero/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Clin Genet ; 103(1): 119-124, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089892

RESUMO

Inherited biallelic pathogenic variants (PVs) in BRCA2 cause Fanconi Anemia complementation group D1 (FA-D1), a severe pediatric bone marrow failure and high-risk cancer syndrome. We identified biallelic BRCA2 PVs in a young adult with multiple basal cell carcinomas, adult-onset colorectal cancer and small cell neuroendocrine carcinoma, without bone marrow failure. No PVs were identified in any other known cancer susceptibility gene, and there was no evidence of reversion mosaicism. The proband's deceased sister had a classic FA-D1 presentation and was shown to carry the same biallelic BRCA2 PVs. A lymphoblastoid cell line derived from the proband demonstrated hypersensitivity to DNA damaging agents, and bone marrow showed aberrant RAD51 staining. Family expansion demonstrated the presence of BRCA2 related cancers in heterozygous family members. Our data highlight the striking phenotypic differences which can be observed within FA-D1 families and expands the clinical spectrum of FA-D1 to include adult presentation with a constellation of solid tumors not previously thought of as characteristic of Fanconi Anemia. Early recognition of this syndrome in a family could prevent further morbidity and mortality by implementation of hereditary breast and ovarian cancer screening and treatment strategies for heterozygous family members.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Proteína BRCA2/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Irmãos , Adulto Jovem
5.
Fac Rev ; 11: 35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532708

RESUMO

To maintain genome fidelity and prevent diseases such as cancer, our cells must constantly detect, and efficiently and precisely repair, DNA damage. Paradoxically, DNA-damaging agents in the form of radiation and chemotherapy are also used to treat cancer. Olivieri et al. used a CRISPR-based screen to identify genes that, when disrupted, lead to sensitivity or resistance to 27 different DNA-damaging agents used in the lab and/or in the clinic to treat cancer patients1. Their results reveal multiple new genes and connections that regulate these critical DNA damage repair pathways, with implications for basic and clinical research as well as cancer therapy.

6.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35938958

RESUMO

The BRCA1-A complex contains matching lysine-63 ubiquitin (K63-Ub) binding and deubiquitylating activities. How these functionalities are coordinated to effectively respond to DNA damage remains unknown. We generated Brcc36 deubiquitylating enzyme (DUB) inactive mice to address this gap in knowledge in a physiologic system. DUB inactivation impaired BRCA1-A complex damage localization and repair activities while causing early lethality when combined with Brca2 mutation. Damage response dysfunction in DUB-inactive cells corresponded to increased K63-Ub on RAP80 and BRCC36. Chemical cross-linking coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and cryogenic-electron microscopy (cryo-EM) analyses of isolated BRCA1-A complexes demonstrated the RAP80 ubiquitin interaction motifs are occupied by ubiquitin exclusively in the DUB-inactive complex, linking auto-inhibition by internal K63-Ub chains to loss of damage site ubiquitin recognition. These findings identify RAP80 and BRCC36 as autologous DUB substrates in the BRCA1-A complex, thus explaining the evolution of matching ubiquitin-binding and hydrolysis activities within a single macromolecular assembly.


Assuntos
Proteína BRCA1 , Dano ao DNA , Proteínas de Ligação a DNA , Enzimas Desubiquitinantes , Chaperonas de Histonas , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Cromatografia Líquida , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Camundongos , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo
7.
DNA Repair (Amst) ; 118: 103383, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35939975

RESUMO

Accurate DNA repair is essential for cellular and organismal homeostasis, and DNA repair defects result in genetic diseases and cancer predisposition. Several environmental factors, such as ultraviolet light, damage DNA, but many other molecules with DNA damaging potential are byproducts of normal cellular processes. In this review, we highlight some of the prominent sources of endogenous DNA damage as well as their mechanisms of repair, with a special focus on repair by the homologous recombination and Fanconi anemia pathways. We also discuss how modulating DNA damage caused by endogenous factors may augment current approaches used to treat BRCA-deficient cancers. Finally, we describe how synthetic lethal interactions may be exploited to exacerbate DNA repair deficiencies and cause selective toxicity in additional types of cancers.


Assuntos
Anemia de Fanconi , Neoplasias , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Humanos , Mutagênicos , Neoplasias/genética
8.
Genes Dev ; 36(3-4): 103-105, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193944

RESUMO

Genomic DNA is continuously challenged by endogenous and exogenous sources of damage. The resulting lesions may act as physical blocks to DNA replication, necessitating repair mechanisms to be intrinsically coupled to the DNA replisome machinery. DNA damage tolerance (DDT) is comprised of translesion synthesis (TLS) and template switch (TS) repair processes that allow the replisome to bypass of bulky DNA lesions and complete DNA replication. How the replisome orchestrates which DDT repair mechanism becomes active at replication blocks has remained enigmatic. In this issue of Genes & Development, Dolce and colleagues (pp. 167-179) report that parental histone deposition by replisome components Ctf4 and Dpb3/4 promotes TS while suppressing error-prone TLS. Deletion of Dpb3/4 restored resistance to DNA-damaging agents in ctf4Δ cells at the expense of synergistic increases in mutagenesis due to elevated TLS. These findings illustrate the importance of replisome-directed chromatin maintenance to genome integrity and the response to DNA-damaging anticancer therapeutics.


Assuntos
Dano ao DNA , DNA , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA
9.
Curr Opin Genet Dev ; 71: 1-9, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34098484

RESUMO

Higher-order chromatin packing serves as a structural barrier to the recognition and repair of genomic lesions. The initiation and outcome of the repair response is dictated by a highly coordinated yet complex interplay between chromatin modifying enzymes and their cognate readers, damage induced chemical modifications, nucleosome density, transcriptional state, and cell cycle-dependent availability of DNA repair machinery. The physical and chemical properties of the DNA lesions themselves further regulate the nature of ensuing chromatin responses. Here we review recent discoveries across these various contexts, where chromatin regulates the homology-guided double-strand break repair mechanism, homologous recombination, and also highlight the key knowledge gaps vital to generate a holistic understanding of this process and its contributions to genome integrity.


Assuntos
Cromatina , Dano ao DNA , Comunicação Celular , Cromatina/genética , Reparo do DNA/genética , Recombinação Homóloga/genética
10.
J Clin Invest ; 131(9)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33938453

RESUMO

Tumor metastasis is a singularly important determinant of survival in most cancers. Historically, radiation therapy (RT) directed at a primary tumor mass was associated infrequently with remission of metastasis outside the field of irradiation. This away-from-target or "abscopal effect" received fringe attention because of its rarity. With the advent of immunotherapy, there are now increasing reports of abscopal effects upon RT in combination with immune checkpoint inhibition. This sparked investigation into underlying mechanisms and clinical trials aimed at enhancement of this effect. While these studies clearly attribute the abscopal effect to an antitumor immune response, the initial molecular triggers for its onset and specificity remain enigmatic. Here, we propose that DNA damage-induced inflammation coupled with neoantigen generation is essential during this intriguing phenomenon of systemic tumor regression and discuss the implications of this model for treatment aimed at triggering the abscopal effect in metastatic cancer.


Assuntos
Dano ao DNA/imunologia , DNA de Neoplasias/imunologia , Imunoterapia , Neoplasias , Animais , Terapia Combinada , Humanos , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
11.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851958

RESUMO

It is well established that short telomeres activate an ATM-driven DNA damage response that leads to senescence in terminally differentiated cells. However, technical limitations have hampered our understanding of how telomere shortening is signaled in human stem cells. Here, we show that telomere attrition induces ssDNA accumulation (G-strand) at telomeres in human pluripotent stem cells (hPSCs), but not in their differentiated progeny. This led to a unique role for ATR in the response of hPSCs to telomere shortening that culminated in an extended S/G2 cell cycle phase and a longer period of mitosis, which was associated with aneuploidy and mitotic catastrophe. Loss of p53 increased resistance to death, at the expense of increased mitotic abnormalities in hPSCs. Taken together, our data reveal an unexpected dominant role of ATR in hPSCs, combined with unique cell cycle abnormalities and, ultimately, consequences distinct from those observed in their isogenic differentiated counterparts.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Mitose , Células-Tronco Pluripotentes/patologia , Telômero/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Aneuploidia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Dano ao DNA , Humanos , Células-Tronco Pluripotentes/metabolismo , Proteína Supressora de Tumor p53/genética
12.
Clin Cancer Res ; 27(7): 1833-1835, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472911

RESUMO

Cancers with DNA repair dysfunction are vulnerable to DNA-damaging agents that invoke a requirement for the disabled repair mechanism. Genome sequencing, coupled with a detailed understanding of mechanisms of DNA repair, has accelerated the discovery of pathway-selective agents that target DNA repair deficiencies in a tumor tissue agnostic manner.See related articles by Topka et al., p. 1997 and Börcsök et al., p. 2011.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Reparo do DNA/efeitos dos fármacos , Sesquiterpenos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
13.
Nat Cell Biol ; 23(2): 160-171, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462394

RESUMO

The response to poly(ADP-ribose) polymerase inhibitors (PARPi) is dictated by homologous recombination (HR) DNA repair and the abundance of lesions that trap PARP enzymes. It remains unclear, however, if the established role of PARP in promoting chromatin accessibility impacts viability in these settings. Using a CRISPR-based screen, we identified the PAR-binding chromatin remodeller ALC1/CHD1L as a key determinant of PARPi toxicity in HR-deficient cells. ALC1 loss reduced viability of breast cancer gene (BRCA)-mutant cells and enhanced sensitivity to PARPi by up to 250-fold, while overcoming several resistance mechanisms. ALC1 deficiency reduced chromatin accessibility concomitant with a decrease in the association of base damage repair factors. This resulted in an accumulation of replication-associated DNA damage, increased PARP trapping and a reliance on HR. These findings establish PAR-dependent chromatin remodelling as a mechanistically distinct aspect of PARPi responses and therapeutic target in HR-deficient cancers.


Assuntos
Cromatina/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Aberrações Cromossômicas , DNA Helicases/química , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Epistasia Genética/efeitos dos fármacos , Instabilidade Genômica , Proteínas de Fluorescência Verde/metabolismo , Recombinação Homóloga/efeitos dos fármacos , Humanos , Metanossulfonato de Metila , Mutação/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos
14.
Cell Rep ; 32(9): 108080, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877684

RESUMO

The DNA-dependent pattern recognition receptor, cGAS (cyclic GMP-AMP synthase), mediates communication between the DNA damage and the immune responses. Mitotic chromosome missegregation stimulates cGAS activity; however, it is unclear whether progression through mitosis is required for cancercell-intrinsic activation of anti-tumor immune responses. Moreover, it is unknown whether cell cycle checkpoint disruption can restore responses in cancer cells that are recalcitrant to DNAdamage-induced inflammation. Here, we demonstrate that prolonged cell cycle arrest at the G2-mitosis boundary from either excessive DNA damage or CDK1 inhibition prevents inflammatory-stimulated gene expression and immune-mediated destruction of distal tumors. Remarkably, DNAdamage-induced inflammatory signaling is restored in a RIG-I-dependent manner upon concomitant disruption of p53 and the G2 checkpoint. These findings link aberrant cell progression and p53 loss to an expanded spectrum of damage-associated molecular pattern recognition and have implications for the design of rational approaches to augment anti-tumor immune responses.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA/genética , Imunidade/genética , Neoplasias/imunologia , RNA/genética , Humanos , Neoplasias/patologia , Transdução de Sinais
15.
Nat Commun ; 11(1): 3726, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709856

RESUMO

Ovarian cancer (OVCA) inevitably acquires resistance to platinum chemotherapy and PARP inhibitors (PARPi). We show that acquisition of PARPi-resistance is accompanied by increased ATR-CHK1 activity and sensitivity to ATR inhibition (ATRi). However, PARPi-resistant cells are remarkably more sensitive to ATRi when combined with PARPi (PARPi-ATRi). Sensitivity to PARPi-ATRi in diverse PARPi and platinum-resistant models, including BRCA1/2 reversion and CCNE1-amplified models, correlate with synergistic increases in replication fork stalling, double-strand breaks, and apoptosis. Surprisingly, BRCA reversion mutations and an ability to form RAD51 foci are frequently not observed in models of acquired PARPi-resistance, suggesting the existence of alternative resistance mechanisms. However, regardless of the mechanisms of resistance, complete and durable therapeutic responses to PARPi-ATRi that significantly increase survival are observed in clinically relevant platinum and acquired PARPi-resistant patient-derived xenografts (PDXs) models. These findings indicate that PARPi-ATRi is a highly promising strategy for OVCAs that acquire resistance to PARPi and platinum.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Platina/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Ciclinas/metabolismo , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Técnicas de Inativação de Genes , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Ovarianas/genética , Rad51 Recombinase/metabolismo , Células-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Biol Cell ; 31(18): 2048-2056, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32579423

RESUMO

Telomerase-free cancer cells employ a recombination-based alternative lengthening of telomeres (ALT) pathway that depends on ALT-associated promyelocytic leukemia nuclear bodies (APBs), whose function is unclear. We find that APBs behave as liquid condensates in response to telomere DNA damage, suggesting two potential functions: condensation to enrich DNA repair factors and coalescence to cluster telomeres. To test these models, we developed a chemically induced dimerization approach to induce de novo APB condensation in live cells without DNA damage. We show that telomere-binding protein sumoylation nucleates APB condensation via interactions between small ubiquitin-like modifier (SUMO) and SUMO interaction motif (SIM), and that APB coalescence drives telomere clustering. The induced APBs lack DNA repair factors, indicating that APB functions in promoting telomere clustering can be uncoupled from enriching DNA repair factors. Indeed, telomere clustering relies only on liquid properties of the condensate, as an alternative condensation chemistry also induces clustering independent of sumoylation. Our findings introduce a chemical dimerization approach to manipulate phase separation and demonstrate how the material properties and chemical composition of APBs independently contribute to ALT, suggesting a general framework for how chromatin condensates promote cellular functions.


Assuntos
Proteína da Leucemia Promielocítica/metabolismo , Homeostase do Telômero/fisiologia , Telômero/metabolismo , Linhagem Celular , Dano ao DNA , Reparo do DNA , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/genética , Telomerase/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Fatores de Transcrição/metabolismo
17.
J Cell Biol ; 218(8): 2545-2563, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31239284

RESUMO

Migration through 3D constrictions can cause nuclear rupture and mislocalization of nuclear proteins, but damage to DNA remains uncertain, as does any effect on cell cycle. Here, myosin II inhibition rescues rupture and partially rescues the DNA damage marker γH2AX, but an apparent block in cell cycle appears unaffected. Co-overexpression of multiple DNA repair factors or antioxidant inhibition of break formation also exert partial effects, independently of rupture. Combined treatments completely rescue cell cycle suppression by DNA damage, revealing a sigmoidal dependence of cell cycle on excess DNA damage. Migration through custom-etched pores yields the same damage threshold, with ∼4-µm pores causing intermediate levels of both damage and cell cycle suppression. High curvature imposed rapidly by pores or probes or else by small micronuclei consistently associates nuclear rupture with dilution of stiff lamin-B filaments, loss of repair factors, and entry from cytoplasm of chromatin-binding cGAS (cyclic GMP-AMP synthase). The cell cycle block caused by constricted migration is nonetheless reversible, with a potential for DNA misrepair and genome variation.


Assuntos
Ciclo Celular , Movimento Celular , Dano ao DNA , Mecanotransdução Celular , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Lamina Tipo B/metabolismo , Camundongos , Mutagênese , Miosina Tipo II/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo
18.
Nature ; 570(7760): 194-199, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142841

RESUMO

Serine hydroxymethyltransferase 2 (SHMT2) regulates one-carbon transfer reactions that are essential for amino acid and nucleotide metabolism, and uses pyridoxal-5'-phosphate (PLP) as a cofactor. Apo SHMT2 exists as a dimer with unknown functions, whereas PLP binding stabilizes the active tetrameric state. SHMT2 also promotes inflammatory cytokine signalling by interacting with the deubiquitylating BRCC36 isopeptidase complex (BRISC), although it is unclear whether this function relates to metabolism. Here we present the cryo-electron microscopy structure of the human BRISC-SHMT2 complex at a resolution of 3.8 Å. BRISC is a U-shaped dimer of four subunits, and SHMT2 sterically blocks the BRCC36 active site and inhibits deubiquitylase activity. Only the inactive SHMT2 dimer-and not the active PLP-bound tetramer-binds and inhibits BRISC. Mutations in BRISC that disrupt SHMT2 binding impair type I interferon signalling in response to inflammatory stimuli. Intracellular levels of PLP regulate the interaction between BRISC and SHMT2, as well as inflammatory cytokine responses. These data reveal a mechanism in which metabolites regulate deubiquitylase activity and inflammatory signalling.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Interferon Tipo I/imunologia , Complexos Multienzimáticos/imunologia , Complexos Multienzimáticos/metabolismo , Transdução de Sinais/imunologia , Microscopia Crioeletrônica , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/ultraestrutura , Glicina Hidroximetiltransferase/ultraestrutura , Células HEK293 , Humanos , Inflamação/imunologia , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Fosfato de Piridoxal/metabolismo
19.
Dev Cell ; 49(6): 920-935.e5, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31105008

RESUMO

Whether cell forces or extracellular matrix (ECM) can impact genome integrity is largely unclear. Here, acute perturbations (∼1 h) to actomyosin stress or ECM elasticity cause rapid and reversible changes in lamin-A, DNA damage, and cell cycle. The findings are especially relevant to organs such as the heart because DNA damage permanently arrests cardiomyocyte proliferation shortly after birth and thereby eliminates regeneration after injury including heart attack. Embryonic hearts, cardiac-differentiated iPS cells (induced pluripotent stem cells), and various nonmuscle cell types all show that actomyosin-driven nuclear rupture causes cytoplasmic mis-localization of DNA repair factors and excess DNA damage. Binucleation and micronuclei increase as telomeres shorten, which all favor cell-cycle arrest. Deficiencies in lamin-A and repair factors exacerbate these effects, but lamin-A-associated defects are rescued by repair factor overexpression and also by contractility modulators in clinical trials. Contractile cells on stiff ECM normally exhibit low phosphorylation and slow degradation of lamin-A by matrix-metalloprotease-2 (MMP2), and inhibition of this lamin-A turnover and also actomyosin contractility are seen to minimize DNA damage. Lamin-A is thus stress stabilized to mechano-protect the genome.


Assuntos
Pontos de Checagem do Ciclo Celular , Núcleo Celular/metabolismo , Dano ao DNA , Coração/embriologia , Lamina Tipo A/metabolismo , Mecanotransdução Celular , Lâmina Nuclear/metabolismo , Animais , Diferenciação Celular , Embrião de Galinha , Galinhas , Reparo do DNA , Matriz Extracelular , Coração/fisiologia , Humanos , Organogênese , Fosforilação
20.
Mol Cancer Ther ; 18(7): 1195-1204, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31072830

RESUMO

Alpha-emitters can be pharmacologically delivered for irradiation of single cancer cells, but cellular lethality could be further enhanced by targeting alpha-emitters directly to the nucleus. PARP-1 is a druggable protein in the nucleus that is overexpressed in neuroblastoma compared with normal tissues and is associated with decreased survival in high-risk patients. To exploit this, we have functionalized a PARP inhibitor (PARPi) with an alpha-emitter astatine-211. This approach offers enhanced cytotoxicity from conventional PARPis by not requiring enzymatic inhibition of PARP-1 to elicit DNA damage; instead, the alpha-particle directly induces multiple double-strand DNA breaks across the particle track. Here, we explored the efficacy of [211At]MM4 in multiple cancers and found neuroblastoma to be highly sensitive in vitro and in vivo Furthermore, alpha-particles delivered to neuroblastoma show antitumor effects and durable responses in a neuroblastoma xenograft model, especially when administered in a fractionated regimen. This work provides the preclinical proof of concept for an alpha-emitting drug conjugate that directly targets cancer chromatin as a therapeutic approach for neuroblastoma and perhaps other cancers.


Assuntos
Neuroblastoma/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA