Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Genes Dev ; 15(24): 3319-29, 2001 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11751637

RESUMO

The C-terminal domain (CTD) of the RNA polymerase II (Pol II) largest subunit is hyperphosphorylated during transcription. Using an in vivo cross-linking/chromatin immunoprecipitation assay, we found previously that different phosphorylated forms of RNA Pol II predominate at different stages of transcription. At promoters, the Pol II CTD is phosphorylated at Ser 5 by the basal transcription factor TFIIH. However, in coding regions, the CTD is predominantly phosphorylated at Ser 2. Here we show that the elongation-associated phosphorylation of Ser 2 is dependent upon the Ctk1 kinase, a putative yeast homolog of Cdk9/P-TEFb. Furthermore, mutations in the Fcp1 CTD phosphatase lead to increased levels of Ser 2 phosphorylation. Both Ctk1 and Fcp1 cross-link to promoter and coding regions, suggesting that they associate with the elongating polymerase. Both Ctk1 and Fcp1 have been implicated in regulation of transcription elongation. Our results suggest that this regulation may occur by modulating levels of Ser 2 phosphorylation, which in turn, may regulate the association of elongation factors with the polymerase.


Assuntos
Ciclinas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src) , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Immunoblotting , Mutação , Fosforilação , Plasmídeos , Testes de Precipitina , Ligação Proteica , Capuzes de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Saccharomyces cerevisiae/genética , Serina/química , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 98(23): 12902-7, 2001 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-11687631

RESUMO

The trithorax genes encode an evolutionarily conserved family of proteins that function to maintain specific patterns of gene expression throughout cellular development. Members of this protein family contain a highly conserved 130- to 140-amino acid motif termed the SET domain. We report the purification and molecular identification of the subunits of a protein complex in the yeast Saccharomyces cerevisiae that includes the trithorax-related protein Set1. This protein complex, which we have named COMPASS (Complex Proteins Associated with Set1), consists of seven polypeptides ranging from 130 to 25 kDa. The same seven proteins were identified in COMPASS purified either by conventional biochemical chromatography or tandem-affinity tagging of the individual subunits of the complex. Null mutants missing any one of the six nonessential subunits of COMPASS grow more slowly than wild-type cells under normal conditions and demonstrate growth sensitivity to hydroxyurea. Furthermore, gene expression profiles of strains missing either of two nonessential subunits of COMPASS are altered in similar ways, suggesting these proteins have similar roles in gene expression in vivo. Molecular characterization of trithorax complexes will facilitate defining the role of this class of proteins in the regulation of gene expression and how their misregulation results in the development of human cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Cromatografia Líquida , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica , Inativação Gênica , Histona-Lisina N-Metiltransferase , Hidroxiureia/farmacologia , Mutação , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Telômero , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
3.
Mol Cell Biol ; 21(23): 8203-12, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11689709

RESUMO

The Elongator complex associated with elongating RNA polymerase II in Saccharomyces cerevisiae was originally reported to have three subunits, Elp1, Elp2, and Elp3. Using the tandem affinity purification (TAP) procedure, we have purified a six-subunit yeast Holo-Elongator complex containing three additional polypeptides, which we have named Elp4, Elp5, and Elp6. TAP tapping and subsequent purification of any one of the six subunits result in the isolation of all six components. Purification of Elongator in higher salt concentrations served to demonstrate that the complex could be separated into two subcomplexes: one consisted of Elp1, -2, and -3, and the other consisted of Elp4, -5, and -6. Deletions of the individual genes encoding the new Elongator subunits showed that only the ELP5 gene is essential for growth. Disruption of the two nonessential new Elongator-encoding genes, ELP4 and ELP6, caused the same phenotypes observed with knockouts of the original Elongator-encoding genes. Results of microarray analyses demonstrated that the gene expression profiles of strains containing deletions of genes encoding subunits of either Elongator subcomplex, in which we detected significantly altered mRNA expression levels for 96 genes, are very similar, implying that all the Elongator subunits likely function together to regulate a group of S. cerevisiae genes in vivo.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Subunidades Proteicas , Fatores de Transcrição/fisiologia , Cromatografia de Afinidade , Deleção de Genes , Perfilação da Expressão Gênica , Substâncias Macromoleculares , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento de Peptídeos , Fenótipo , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Saccharomyces cerevisiae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Regulação para Cima
4.
J Mol Biol ; 310(1): 33-49, 2001 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-11419935

RESUMO

The E. coli NusA transcription elongation protein (NusA(Ec)), identified because of its requirement for transcription antitermination by the N protein, has an Arg-rich S1 RNA-binding domain. A complex of N and NusA with other host factors binding at NUT sites in the RNA renders RNA polymerase termination-resistant. An E. coli haploid for nusA944, having nine different codons replacing four normally found in the Arg-rich region, is defective in support of N action. Another variant, haploid for the nusAR199A allele, with a change in a highly conserved Arg codon in the S1 domain, effectively supports N-mediated antitermination. However, nusAR199A is recessive to nusA944, while nusA(Ec) is dominant to nusA944 for support of N-mediated antitermination, suggesting a competition between NusA944 and NusAR199A during complex formation. Complex formation with the variant NusA proteins was assessed by mobility gel shifts. NusAR199A, unlike NusA(Ec) and NusA944, fails to form a complex with N and NUT RNA. However, while NusAR199A, like wild-type NusA, forms an enlarged complex with NUT RNA, N, RNA polymerase, and other host proteins required for efficient N-mediated antitermination, NusA944 does not form this enlarged complex. Consistent with the in vivo results, NusA944 prevents NusAR199A but not NusA(Ec) from forming the enlarged complex. The simplest conclusion from these dominance studies is that in the formation of the complete active antitermination complex in vivo, NusA and N binding to the newly synthesized NUT RNA precedes addition of the other factors. Alternative less effective routes to the active complex that allows bypass of this preferred pathway may also exist.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Fatores de Alongamento de Peptídeos , RNA Bacteriano/metabolismo , Regiões Terminadoras Genéticas/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Alelos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Bacteriófago lambda/genética , Sequência de Bases , Sequência Conservada/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli , Genes Dominantes/genética , Genes Letais/genética , Teste de Complementação Genética , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Estrutura Terciária de Proteína , RNA Bacteriano/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Elongação da Transcrição
7.
Genes Dev ; 14(20): 2664-75, 2000 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11040219

RESUMO

The Escherichia coli NusA protein modulates pausing, termination, and antitermination by associating with the transcribing RNA polymerase core enzyme. NusA can be covalently cross-linked to nascent RNA within a transcription complex, but does not bind RNA on its own. We have found that deletion of the 79 carboxy-terminal amino acids of the 495-amino-acid NusA protein allows NusA to bind RNA in gel mobility shift assays. The carboxy-terminal domain (CTD) of the alpha subunit of RNA polymerase, as well as the bacteriophage lambda N gene antiterminator protein, bind to carboxy-terminal regions of NusA and enable full-length NusA to bind RNA. Binding of NusA to RNA in the presence of alpha or N involves an amino-terminal S1 homology region that is otherwise inactive in full-length NusA. The interaction of the alpha-CTD with full-length NusA stimulates termination. N may prevent termination by inducing NusA to interact with N utilization (nut) site RNA rather than RNA near the 3' end of the nascent transcript. Sequence analysis showed that the alpha-CTD contains a modified helix-hairpin-helix motif (HhH), which is also conserved in the carboxy-terminal regions of some eubacterial NusA proteins. These HhH motifs may mediate protein-protein interactions in NusA and the alpha-CTD.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Fatores de Alongamento de Peptídeos , RNA Bacteriano/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Escherichia coli , Dados de Sequência Molecular , Mutação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Fatores de Elongação da Transcrição
8.
Mol Cell Biol ; 20(20): 7438-49, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11003641

RESUMO

Transcription by RNA polymerase II is accompanied by cyclic phosphorylation and dephosphorylation of the carboxy-terminal heptapeptide repeat domain (CTD) of its largest subunit. We have used deletion and point mutations in Fcp1p, a TFIIF-interacting CTD phosphatase, to show that the integrity of its BRCT domain, like that of its catalytic domain, is important for cell viability, mRNA synthesis, and CTD dephosphorylation in vivo. Although regions of Fcp1p carboxy terminal to its BRCT domain and at its amino terminus were not essential for viability, deletion of either of these regions affected the phosphorylation state of the CTD. Two portions of this carboxy-terminal region of Fcp1p bound directly to the first cyclin-like repeat in the core domain of the general transcription factor TFIIB, as well as to the RAP74 subunit of TFIIF. These regulatory interactions with Fcp1p involved closely related amino acid sequence motifs in TFIIB and RAP74. Mutating the Fcp1p-binding motif KEFGK in the RAP74 (Tfg1p) subunit of TFIIF to EEFGE led to both synthetic phenotypes in certain fcp1 tfg1 double mutants and a reduced ability of Fcp1p to activate transcription when it is artificially tethered to a promoter. These results suggest strongly that this KEFGK motif in RAP74 mediates its interaction with Fcp1p in vivo.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição TFII , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Espectroscopia de Ressonância Magnética , Metanossulfonato de Metila/farmacologia , Mutação , Fenótipo , Fosfoproteínas Fosfatases/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIB , Fatores de Transcrição/genética , Ativação Transcricional
9.
J Cell Biol ; 150(2): 309-20, 2000 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-10908574

RESUMO

DEK is an approximately 45-kD phosphoprotein that is fused to the nucleoporin CAN as a result of a (6;9) chromosomal translocation in a subset of acute myeloid leukemias (AMLs). It has also been identified as an autoimmune antigen in juvenile rheumatoid arthritis and other rheumatic diseases. Despite the association of DEK with several human diseases, its function is not known. In this study, we demonstrate that DEK, together with SR proteins, associates with the SRm160 splicing coactivator in vitro. DEK is recruited to splicing factor-containing nuclear speckles upon concentration of SRm160 in these structures, indicating that DEK and SRm160 associate in vivo. We further demonstrate that DEK associates with splicing complexes through interactions mediated by SR proteins. Significantly, DEK remains bound to the exon-product RNA after splicing, and this association requires the prior formation of a spliceosome. Thus, DEK is a candidate factor for controlling postsplicing steps in gene expression that are influenced by the prior removal of an intron from pre-mRNA.


Assuntos
Antígenos Nucleares , Proteínas Cromossômicas não Histona , Éxons/fisiologia , Leucemia Mieloide Aguda/metabolismo , Proteínas Associadas à Matriz Nuclear , Proteínas Oncogênicas/metabolismo , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Células HeLa , Humanos , Leucemia Mieloide Aguda/fisiopatologia , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA/metabolismo
10.
Mol Microbiol ; 34(3): 523-37, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10564494

RESUMO

The association of the essential Escherichia coli protein NusA with RNA polymerase increases pausing and the efficiency of termination at intrinsic terminators. NusA is also part of the phage lambda N protein-modified antitermination complex that functions to prevent transcriptional termination. We have investigated the structure of NusA using various deletion fragments of NusA in a variety of in vitro assays. Sequence and structural alignments have suggested that NusA has both S1 and KH homology regions that are thought to bind RNA. We show here that the portion of NusA containing the S1 and KH homology regions is important for NusA to enhance both termination and antitermination. There are two RNA polymerase-binding regions in NusA, one in the amino-terminal 137 amino acids and the other in the carboxy-terminal 264 amino acids; only the amino-terminal RNA polymerase-binding region provides a functional contact that enhances termination at an intrinsic terminator or antitermination by N. The carboxy-terminal region of NusA is also required for interaction with N and is important for the formation of an N-NusA-nut site or N-NusA-RNA polymerase-nut site complex; the instability of complexes lacking this carboxy-terminal region of NusA that binds N and RNA polymerase can be compensated for by the presence of the additional E. coli elongation factors, NusB, NusG and ribosomal protein S10.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófago lambda/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos , RNA Bacteriano/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófago lambda/genética , Sítios de Ligação , Dicroísmo Circular , Escherichia coli/genética , Proteínas de Escherichia coli , Deleção de Genes , Espectroscopia de Ressonância Magnética , Plasmídeos/genética , RNA Bacteriano/genética , Regiões Terminadoras Genéticas/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Fatores de Elongação da Transcrição , Proteínas Virais Reguladoras e Acessórias/genética
12.
Mol Cell ; 4(1): 55-62, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10445027

RESUMO

The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II is phosphorylated soon after transcriptional initiation. We show here that the essential FCP1 gene of S. cerevisiae is linked genetically to RNA polymerase II and encodes a CTD phosphatase essential for dephosphorylation of RNA polymerase II in vivo. Fcp1p contains a phosphatase motif, psi psi psi DXDX(T/V)psi psi, which is novel for eukaryotic protein phosphatases and essential for Fcp1p to function in vivo. This motif is also required for recombinant Fcp1p to dephosphorylate the RNA polymerase II CTD or the artificial substrate p-nitrophenylphosphate in vitro. The effects of fcp1 mutations in global run-on and genome-wide expression studies show that transcription by RNA polymerase II in S. cerevisiae generally requires CTD phosphatase.


Assuntos
Fosfoproteínas Fosfatases/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/enzimologia , Mutação , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Temperatura , Transcrição Gênica/genética
13.
J Biol Chem ; 274(28): 19868-73, 1999 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-10391932

RESUMO

The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) functions at multiple stages of transcription and is involved in the coupling of transcription to pre-mRNA processing. We have used site-specific protein-DNA photocross-linking to determine the position of the CTD along promoter DNA in the transcriptional pre-initiation complex. Comparison of the promoter contacts made by RNAP II with or without the CTD indicate that the CTD approaches promoter DNA downstream of the transcriptional initiation site between positions +16 and +26. Incubation of pre-assembled initiation complexes with antibodies to the CTD prior to UV irradiation led to specific photocross-linking of the IgG heavy chain to nucleotide +17, indicating that the CTD is accessible for protein-protein interactions in a complex containing RNAP II and the general initiation factors. In conjunction with previously published observations, our structural data are fully compatible with the notion that DNA wrapping around RNAP II places the CTD and the RNA exit channel into juxtaposition and provide a rationale for contacts between the SRB-mediator complex and core RNAP II observed in the RNAP II holoenzyme.


Assuntos
Conformação de Ácido Nucleico , RNA Polimerase II/química , Marcadores de Afinidade , Animais , Sequência de Bases , Bovinos , Reagentes de Ligações Cruzadas , DNA/química , Cadeias Pesadas de Imunoglobulinas/química , Modelos Moleculares , Dados de Sequência Molecular , Fotólise , Regiões Promotoras Genéticas , RNA/química , Precursores de RNA/genética , Timo/enzimologia , Fatores de Transcrição/genética , Transcrição Gênica , Raios Ultravioleta
14.
Mol Cell ; 3(5): 673-8, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10360183

RESUMO

Phosphorylation of the yeast transcription factor GAL4 at S699 is required for efficient galactose-inducible transcription. We demonstrate that this site is a substrate for the RNA polymerase holoenzyme-associated CDK SRB10. S699 phosphorylation requires SRB10 in vivo, and this site is phosphorylated by purified SRB10/ SRB11 CDK/cyclin in vitro. RNA Pol II holoenzymes purified from WT yeast phosphorylate GAL4 at sites observed in vivo whereas holoenzymes from srb10 yeast are incapable of phosphorylating GAL4 at S699. Mutations at GAL4 S699 and srb10 are epistatic for GAL induction, demonstrating that SRB10 regulates GAL4 activity through this phosphorylation in vivo. These results demonstrate a function for the SRB10/ CDK8 holoenzyme-associated CDK that involves regulation of transactivators by phosphorylation during transcriptional activation.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Leveduras/genética , Animais , Quinase 8 Dependente de Ciclina , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Técnicas In Vitro , Camundongos , Fosforilação , Ativação Transcricional/fisiologia , Leveduras/enzimologia
15.
Angiology ; 50(6): 509-13, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10378828

RESUMO

Spontaneous coronary artery dissection (SCAD) is an uncommon cause of myocardial ischemia and infarction. Hypertension has not been associated with SCAD. The authors report multivessel SCAD in an elderly woman with severe systolic hypertension. They postulate that hypertension of this degree may play a pathophysiologic role in the causation of SCAD.


Assuntos
Dissecção Aórtica/etiologia , Aneurisma Coronário/etiologia , Hipertensão/complicações , Idoso , Angina Pectoris/etiologia , Doença das Coronárias/complicações , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Infarto do Miocárdio/etiologia , Isquemia Miocárdica/etiologia
16.
J Biol Chem ; 274(22): 15883-91, 1999 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-10336493

RESUMO

The E2F family of heterodimeric transcription factors plays an important role in the regulation of gene expression at the G1/S phase transition of the mammalian cell cycle. Previously, we have demonstrated that cell cycle regulation of murine dihydrofolate reductase (dhfr) expression requires E2F-mediated activation of the dhfr promoter in S phase. To investigate the mechanism by which E2F activates an authentic E2F-regulated promoter, we precisely replaced the E2F binding site in the dhfr promoter with a Gal4 binding site. Using Gal4-E2F1 derivatives, we found that E2F1 amino acids 409-437 contain a potent core transactivation domain. Functional analysis of the E2F1 core domain demonstrated that replacement of phenylalanine residues 413, 425, and 429 with alanine reduces both transcriptional activation of the dhfr promoter and protein-protein interactions with CBP, transcription factor (TF) IIH, and TATA-binding protein (TBP). However, additional amino acid substitutions for phenylalanine 429 demonstrated a strong correlation between activation of the dhfr promoter and binding of CBP, but not TFIIH or TBP. Finally, transactivator bypass experiments indicated that direct recruitment of CBP is sufficient for activation of the dhfr promoter. Therefore, we suggest that recruitment of CBP is one mechanism by which E2F activates the dhfr promoter.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas de Drosophila , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae , Fatores Associados à Proteína de Ligação a TATA , Tetra-Hidrofolato Desidrogenase/genética , Transativadores/genética , Fator de Transcrição TFIID , Fatores de Transcrição TFII , Fatores de Transcrição/genética , Células 3T3 , Sequência de Aminoácidos , Animais , Proteína de Ligação a CREB , Ciclo Celular , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Proteínas Fúngicas/genética , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2 , Proteína do Retinoblastoma/genética , Proteína 1 de Ligação ao Retinoblastoma , Alinhamento de Sequência , Proteína de Ligação a TATA-Box , Fator de Transcrição DP1 , Fator de Transcrição TFIIH , Ativação Transcricional/genética , Transfecção
18.
J Biol Chem ; 273(42): 27593-601, 1998 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-9765293

RESUMO

TFIIF (RAP30/74) is a general initiation factor that also increases the rate of elongation by RNA polymerase II. A two-hybrid screen for RAP74-interacting proteins produced cDNAs encoding FCP1a, a novel, ubiquitously expressed human protein that interacts with the carboxyl-terminal evolutionarily conserved domain of RAP74. Related cDNAs encoding FCP1b lack a carboxyl-terminal RAP74-binding domain of FCP1a. FCP1 is an essential subunit of a RAP74-stimulated phosphatase that processively dephosphorylates the carboxyl-terminal domain of the largest RNA polymerase II subunit. FCP1 is also a stoichiometric component of a human RNA polymerase II holoenzyme complex.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Holoenzimas/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Transcrição Gênica
19.
Mol Cell ; 2(3): 341-51, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9774972

RESUMO

The formation of the RNA polymerase II (Pol II) initiation complex was analyzed using site-specific protein-DNA photo-cross-linking. We show that the RAP74 subunit of transcription factor (TF) IIF, through its RAP30-binding domain and an adjacent region necessary for the formation of homomeric interactions in vitro, dramatically alters the distribution of RAP30, TFIIE, and Pol II along promoter DNA between positions -40 and +26. This isomerization of the complex, which requires both TFIIF and TFIIE, is accompanied by tight wrapping of the promoter DNA for almost a full turn around Pol II. Addition of TFIIH enhances photo-cross-linking of Pol II to a number of promoter positions, suggesting that TFIIH tightens the DNA wrap around the enzyme. We present a general model to describe transcription initiation.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII , Fatores de Transcrição/metabolismo , Adenoviridae/genética , Sequência de Bases , Sítios de Ligação , Reagentes de Ligações Cruzadas , DNA Viral/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Polimerase II/química , Proteínas Recombinantes , Fatores de Transcrição/química
20.
Mol Cell ; 1(2): 265-75, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9659923

RESUMO

The transcriptional antitermination protein N of bacteriophage lambda binds the boxB component of the RNA enhancer nut (boxA + boxB) and the E. coli elongation factor NusA. Efficient antitermination by N requires an RNA-binding domain (amino acids 1-22) and two activating regions for antitermination: a newly identified NusA-binding region (amino acids 34-47) that suppresses NusA's enhancement of termination, and a carboxy-terminal region (amino acids 73-107) that interacts directly with RNA polymerase. Heteronuclear magnetic resonance experiments demonstrate that N is a disordered protein. Interaction with boxB RNA induces only the RNA-binding domain of N to adopt a folded conformation, while the activating regions of the protein remain disordered in the absence of their target proteins.


Assuntos
Bacteriófago lambda/química , Bacteriófago lambda/genética , Regulação Viral da Expressão Gênica , Fatores de Alongamento de Peptídeos , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/enzimologia , Sítios de Ligação/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Proteínas de Escherichia coli , Ligantes , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição , Proteínas Virais Reguladoras e Acessórias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA