Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Science ; 375(6586): eabj7484, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298245

RESUMO

Direct observation of evolution in response to natural environmental change can resolve fundamental questions about adaptation, including its pace, temporal dynamics, and underlying phenotypic and genomic architecture. We tracked the evolution of fitness-associated phenotypes and allele frequencies genome-wide in 10 replicate field populations of Drosophila melanogaster over 10 generations from summer to late fall. Adaptation was evident over each sampling interval (one to four generations), with exceptionally rapid phenotypic adaptation and large allele frequency shifts at many independent loci. The direction and basis of the adaptive response shifted repeatedly over time, consistent with the action of strong and rapidly fluctuating selection. Overall, we found clear phenotypic and genomic evidence of adaptive tracking occurring contemporaneously with environmental change, thus demonstrating the temporally dynamic nature of adaptation.


Assuntos
Aclimatação , Evolução Biológica , Drosophila melanogaster/fisiologia , Seleção Genética , Animais , Drosophila melanogaster/genética , Ecossistema , Meio Ambiente , Evolução Molecular , Frequência do Gene , Aptidão Genética , Genoma de Inseto , Fenótipo , Estações do Ano
3.
G3 (Bethesda) ; 9(12): 4159-4168, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31636085

RESUMO

Evolve-and-resequence (E+R) experiments leverage next-generation sequencing technology to track the allele frequency dynamics of populations as they evolve. While previous work has shown that adaptive alleles can be detected by comparing frequency trajectories from many replicate populations, this power comes at the expense of high-coverage (>100x) sequencing of many pooled samples, which can be cost-prohibitive. Here, we show that accurate estimates of allele frequencies can be achieved with very shallow sequencing depths (<5x) via inference of known founder haplotypes in small genomic windows. This technique can be used to efficiently estimate frequencies for any number of bi-allelic SNPs in populations of any model organism founded with sequenced homozygous strains. Using both experimentally-pooled and simulated samples of Drosophila melanogaster, we show that haplotype inference can improve allele frequency accuracy by orders of magnitude for up to 50 generations of recombination, and is robust to moderate levels of missing data, as well as different selection regimes. Finally, we show that a simple linear model generated from these simulations can predict the accuracy of haplotype-derived allele frequencies in other model organisms and experimental designs. To make these results broadly accessible for use in E+R experiments, we introduce HAF-pipe, an open-source software tool for calculating haplotype-derived allele frequencies from raw sequencing data. Ultimately, by reducing sequencing costs without sacrificing accuracy, our method facilitates E+R designs with higher replication and resolution, and thereby, increased power to detect adaptive alleles.


Assuntos
Frequência do Gene/genética , Análise de Sequência de DNA/métodos , Animais , Simulação por Computador , Drosophila melanogaster , Feminino , Efeito Fundador , Haplótipos , Modelos Lineares , Recombinação Genética/genética , Seleção Genética , Software , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 116(40): 20025-20032, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527278

RESUMO

Population genomic data has revealed patterns of genetic variation associated with adaptation in many taxa. Yet understanding the adaptive process that drives such patterns is challenging; it requires disentangling the ecological agents of selection, determining the relevant timescales over which evolution occurs, and elucidating the genetic architecture of adaptation. Doing so for the adaptation of hosts to their microbiome is of particular interest with growing recognition of the importance and complexity of host-microbe interactions. Here, we track the pace and genomic architecture of adaptation to an experimental microbiome manipulation in replicate populations of Drosophila melanogaster in field mesocosms. Shifts in microbiome composition altered population dynamics and led to divergence between treatments in allele frequencies, with regions showing strong divergence found on all chromosomes. Moreover, at divergent loci previously associated with adaptation across natural populations, we found that the more common allele in fly populations experimentally enriched for a certain microbial group was also more common in natural populations with high relative abundance of that microbial group. These results suggest that microbiomes may be an agent of selection that shapes the pattern and process of adaptation and, more broadly, that variation in a single ecological factor within a complex environment can drive rapid, polygenic adaptation over short timescales.


Assuntos
Adaptação Biológica , Drosophila melanogaster/fisiologia , Genoma , Genômica , Microbiota , Animais , Evolução Biológica , Frequência do Gene , Genética Populacional , Genômica/métodos , Densidade Demográfica , Seleção Genética
5.
Cell ; 160(4): 583-594, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25640238

RESUMO

Within each bacterial species, different strains may vary in the set of genes they encode or in the copy number of these genes. Yet, taxonomic characterization of the human microbiota is often limited to the species level or to previously sequenced strains, and accordingly, the prevalence of intra-species variation, its functional role, and its relation to host health remain unclear. Here, we present a comprehensive large-scale analysis of intra-species copy-number variation in the gut microbiome, introducing a rigorous computational pipeline for detecting such variation directly from shotgun metagenomic data. We uncover a large set of variable genes in numerous species and demonstrate that this variation has significant functional and clinically relevant implications. We additionally infer intra-species compositional profiles, identifying population structure shifts and the presence of yet uncharacterized variants. Our results highlight the complex relationship between microbiome composition and functional capacity, linking metagenome-level compositional shifts to strain-level variation.


Assuntos
Bacteroidaceae/genética , Bacteroidetes/genética , Enterobacteriaceae/genética , Trato Gastrointestinal/microbiologia , Dosagem de Genes , Bactérias Gram-Positivas/genética , Microbiota , Bacteroidaceae/classificação , Bacteroidetes/classificação , Enterobacteriaceae/classificação , Bactérias Gram-Positivas/classificação , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Obesidade/microbiologia , Análise de Componente Principal
6.
Curr Opin Biotechnol ; 24(4): 810-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23623295

RESUMO

The human microbiome represents a vastly complex ecosystem that is tightly linked to our development, physiology, and health. Our increased capacity to generate multiple channels of omic data from this system, brought about by recent advances in high throughput molecular technologies, calls for the development of systems-level methods and models that take into account not only the composition of genes and species in a microbiome but also the interactions between these components. Such models should aim to study the microbiome as a community of species whose metabolisms are tightly intertwined with each other and with that of the host, and should be developed with a view towards an integrated, comprehensive, and predictive modeling framework. Here, we review recent work specifically in metabolic modeling of the human microbiome, highlighting both novel methodologies and pressing challenges. We discuss various modeling approaches that lay the foundation for a full-scale predictive model, focusing on models of interactions between microbial species, metagenome-scale models of community-level metabolism, and models of the interaction between the microbiome and the host. Continued development of such models and of their integration into a multi-scale model of the microbiome will lead to a deeper mechanistic understanding of how variation in the microbiome impacts the host, and will promote the discovery of clinically relevant and ecologically relevant insights from the rich trove of data now available.


Assuntos
Microbiota , Modelos Biológicos , Bactérias/metabolismo , Ecossistema , Trato Gastrointestinal/microbiologia , Humanos
7.
IET Syst Biol ; 7(6): 243-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24712101

RESUMO

The development and progression of cancer is associated with disruption of biological networks. Historically studies have identified sets of signature genes involved in events ultimately leading to the development of cancer. Identification of such sets does not indicate which biologic processes are oncogenic drivers and makes it difficult to identify key networks to target for interventions. Using a comprehensive, integrated computational approach, the authors identify the sonic hedgehog (SHH) pathway as the gene network that most significantly distinguishes tumour and tumour-adjacent samples in human hepatocellular carcinoma (HCC). The analysis reveals that the SHH pathway is commonly activated in the tumour samples and its activity most significantly differentiates tumour from the non-tumour samples. The authors experimentally validate these in silico findings in the same biologic material using Western blot analysis. This analysis reveals that the expression levels of SHH, phosphorylated cyclin B1, and CDK7 levels are much higher in most tumour tissues as compared to normal tissue. It is also shown that siRNA-mediated silencing of SHH gene expression resulted in a significant reduction of cell proliferation in a liver cancer cell line, SNU449 indicating that SHH plays a major role in promoting cell proliferation in liver cancer. The SHH pathway is a key network underpinning HCC aetiology which may guide the development of interventions for this most common form of human liver cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/metabolismo , Análise de Sistemas , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ciclina B1/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inativação Gênica , Humanos , Fígado/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , RNA Interferente Pequeno/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
8.
Proc Natl Acad Sci U S A ; 109(2): 594-9, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22184244

RESUMO

The human microbiome plays a key role in a wide range of host-related processes and has a profound effect on human health. Comparative analyses of the human microbiome have revealed substantial variation in species and gene composition associated with a variety of disease states but may fall short of providing a comprehensive understanding of the impact of this variation on the community and on the host. Here, we introduce a metagenomic systems biology computational framework, integrating metagenomic data with an in silico systems-level analysis of metabolic networks. Focusing on the gut microbiome, we analyze fecal metagenomic data from 124 unrelated individuals, as well as six monozygotic twin pairs and their mothers, and generate community-level metabolic networks of the microbiome. Placing variations in gene abundance in the context of these networks, we identify both gene-level and network-level topological differences associated with obesity and inflammatory bowel disease (IBD). We show that genes associated with either of these host states tend to be located at the periphery of the metabolic network and are enriched for topologically derived metabolic "inputs." These findings may indicate that lean and obese microbiomes differ primarily in their interface with the host and in the way they interact with host metabolism. We further demonstrate that obese microbiomes are less modular, a hallmark of adaptation to low-diversity environments. We additionally link these topological variations to community species composition. The system-level approach presented here lays the foundation for a unique framework for studying the human microbiome, its organization, and its impact on human health.


Assuntos
Trato Gastrointestinal/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Redes e Vias Metabólicas/genética , Metagenoma/genética , Metagenômica/métodos , Obesidade/microbiologia , Biologia de Sistemas/métodos , Biologia Computacional , Bases de Dados Genéticas , Fezes/microbiologia , Humanos , Especificidade da Espécie , Estatísticas não Paramétricas
9.
BMC Bioinformatics ; 12: 133, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21542931

RESUMO

BACKGROUND: The PathOlogist is a new tool designed to transform large sets of gene expression data into quantitative descriptors of pathway-level behavior. The tool aims to provide a robust alternative to the search for single-gene-to-phenotype associations by accounting for the complexity of molecular interactions. RESULTS: Molecular abundance data is used to calculate two metrics--'activity' and 'consistency'--for each pathway in a set of more than 500 canonical molecular pathways (source: Pathway Interaction Database, http://pid.nci.nih.gov). The tool then allows a detailed exploration of these metrics through integrated visualization of pathway components and structure, hierarchical clustering of pathways and samples, and statistical analyses designed to detect associations between pathway behavior and clinical features. CONCLUSIONS: The PathOlogist provides a straightforward means to identify the functional processes, rather than individual molecules, that are altered in disease. The statistical power and biologic significance of this approach are made easily accessible to laboratory researchers and informatics analysts alike. Here we show as an example, how the PathOlogist can be used to establish pathway signatures that robustly differentiate breast cancer cell lines based on response to treatment.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes e Vias Metabólicas , Neoplasias/genética , Neoplasias/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Bases de Dados Genéticas , Glioblastoma/tratamento farmacológico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade
10.
PLoS One ; 6(1): e14437, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21283511

RESUMO

High resolution, system-wide characterizations have demonstrated the capacity to identify genomic regions that undergo genomic aberrations. Such research efforts often aim at associating these regions with disease etiology and outcome. Identifying the corresponding biologic processes that are responsible for disease and its outcome remains challenging. Using novel analytic methods that utilize the structure of biologic networks, we are able to identify the specific networks that are highly significantly, nonrandomly altered by regions of copy number amplification observed in a systems-wide analysis. We demonstrate this method in breast cancer, where the state of a subset of the pathways identified through these regions is shown to be highly associated with disease survival and recurrence.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Instabilidade Genômica , Neoplasias/genética , Neoplasias da Mama , Variações do Número de Cópias de DNA , Feminino , Humanos , Métodos , Neoplasias/etiologia , Recidiva , Biologia de Sistemas/métodos
11.
Hepatology ; 52(6): 2034-43, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21105107

RESUMO

UNLABELLED: Primary liver cancer is the third most common cause of cancer-related death worldwide, with a rising incidence in Western countries. Little is known about the genetic etiology of this disease. To identify genetic factors associated with hepatocellular carcinoma (HCC) and liver cirrhosis (LC), we conducted a comprehensive, genome-wide variation analysis in a population of unrelated Asian individuals. Copy number variation (CNV) and single nucleotide polymorphisms (SNPs) were assayed in peripheral blood with the high-density Affymetrix SNP6.0 microarray platform. We used a two-stage discovery and replication design to control for overfitting and to validate observed results. We identified a strong association with CNV at the T-cell receptor gamma and alpha loci (P < 1 × 10(-15)) in HCC cases when contrasted with controls. This variation appears to be somatic in origin, reflecting differences between T-cell receptor processing in lymphocytes from individuals with liver disease and healthy individuals that is not attributable to chronic hepatitis virus infection. Analysis of constitutional variation identified three susceptibility loci including the class II MHC complex, whose protein products present antigen to T-cell receptors and mediate immune surveillance. Statistical analysis of biologic networks identified variation in the "antigen presentation and processing" pathway as being highly significantly associated with HCC (P = 1 × 10(-11)). SNP analysis identified two variants whose allele frequencies differ significantly between HCC and LC. One of these (P = 1.74 × 10(-12)) lies in the PTEN homolog TPTE2. CONCLUSION: Combined analysis of CNV, individual SNPs, and pathways suggest that HCC susceptibility is mediated by germline factors affecting the immune response and differences in T-cell receptor processing.


Assuntos
Carcinoma Hepatocelular/genética , Variações do Número de Cópias de DNA , Genes MHC da Classe II/genética , Neoplasias Hepáticas/genética , Estudo de Associação Genômica Ampla , Humanos , Cirrose Hepática/genética , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA