Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
BMC Res Notes ; 17(1): 266, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285497

RESUMO

OBJECTIVE: The goal of the research presented here is to determine if methods previously developed for the aqueous extraction of PrPSc from formalin-fixed paraffin-embedded tissue (FFPET) are applicable to the detection PrPSc by real-time quaking induced conversion (RT-QuIC). Previous work has utilized aqueous extraction of FFPET for detection of transmissible spongiform encephalopathies (TSEs) utilizing western blot and ELISA. This research extends the range of suitable methods for detection of TSEs in FFPET to RT-QuIC, which is arguably the most sensitive method to detect TSEs. RESULTS: We found complete agreement between the TSE status and the results from RT-QuIC seeded with the aqueous extract of FFPET samples. The method affords the diagnostic assessment TSE status by RT-QuIC of FFPET without the use of organic solvents that would otherwise create a mixed chemical-biological waste for disposal.


Assuntos
Formaldeído , Inclusão em Parafina , Proteínas PrPSc , Doenças Priônicas , Fixação de Tecidos , Formaldeído/química , Inclusão em Parafina/métodos , Doenças Priônicas/diagnóstico , Proteínas PrPSc/isolamento & purificação , Proteínas PrPSc/metabolismo , Proteínas PrPSc/análise , Animais , Fixação de Tecidos/métodos , Camundongos , Humanos
2.
Emerg Infect Dis ; 30(8): 1651-1659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043428

RESUMO

White-tailed deer are susceptible to scrapie (WTD scrapie) after oronasal inoculation with the classical scrapie agent from sheep. Deer affected by WTD scrapie are difficult to differentiate from deer infected with chronic wasting disease (CWD). To assess the transmissibility of the WTD scrapie agent and tissue phenotypes when further passaged in white-tailed deer, we oronasally inoculated wild-type white-tailed deer with WTD scrapie agent. We found that WTD scrapie and CWD agents were generally similar, although some differences were noted. The greatest differences were seen in bioassays of cervidized mice that exhibited significantly longer survival periods when inoculated with WTD scrapie agent than those inoculated with CWD agent. Our findings establish that white-tailed deer are susceptible to WTD scrapie and that the presence of WTD scrapie agent in the lymphoreticular system suggests the handling of suspected cases should be consistent with current CWD guidelines because environmental shedding may occur.


Assuntos
Cervos , Scrapie , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/transmissão , Scrapie/transmissão , Camundongos , Ovinos , Suscetibilidade a Doenças
3.
Res Vet Sci ; 176: 105348, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970868

RESUMO

Scrapie is a fatal, transmissible neurodegenerative disease that affects sheep and goats. Replication of PrPSc in the lymphoid tissue allows for the scrapie agent to be shed into the environment. Brain and retropharyngeal lymph node (RPLN) from a sheep inoculated with the classical scrapie agent was used to compare infectivity of these tissues. Nine Cheviot sheep were used in this study, randomly assigned into two groups based on inocula. Group one (n = 4) received 1 mL of 10% brain homogenate and consisted of all VRQ/VRQ PRNP genotypes. Group two (n = 5) had three sheep receive 1 mL of a 10% RPLN homogenate (13-7), and two sheep receive 0.5 mL of a 10% RPLN homogenate (13-7) because of availability. Sheep in group two were also VRQ/VRQ genotyped. Brain and lymph tissues were tested by histopathology, immunohistochemistry, western blot, enzyme immunoassay, and conformational stability for PrPSc accumulation. Both groups displayed clinical signs of ataxia, moribund, head tremors, circling, and lethargy prior to euthanizing at an average of 16.2 mpi (months post inoculation) (group one) or 19.56 mpi (group two). Additionally, brainstem tissue from both groups displayed the same apparent molecular mass by western blot examination. Spongiform lesion profiling and PrPSc accumulation in brain and lymph tissues were similar in both groups. Conformational stability results displayed no significant difference in obex or RPLN tissue. Overall, these data suggest lymph nodes containing the classical scrapie agent are infectious to sheep, aiding in the understanding of sheep scrapie transmission.


Assuntos
Encéfalo , Linfonodos , Proteínas PrPSc , Scrapie , Animais , Scrapie/transmissão , Scrapie/patologia , Ovinos , Linfonodos/patologia , Encéfalo/patologia , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Imuno-Histoquímica/veterinária , Genótipo
4.
PLoS One ; 19(2): e0299038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394122

RESUMO

OBJECTIVE: Neurofilament light chain (Nf-L) has been used to detect neuroaxonal damage in the brain caused by physical injury or disease. The purpose of this study was to determine if serum Nf-L could be used as a biomarker for pre-symptomatic detection of scrapie in sheep. METHODS: Four sheep with prion protein genotype AVQQ were intranasally inoculated with the classical scrapie strain x124. Blood was collected every 4 weeks until 44 weeks post-inoculation, at which point weekly collection commenced. Serum was analyzed using single molecule array (Quanterix SR-X) to evaluate Nf-L concentrations. RESULTS: Scrapie was confirmed in each sheep by testing homogenized brainstem at the level of the obex with a commercially available enzyme immunoassay. Increased serum Nf-L concentrations were identified above the determined cutoff during the last tenth of the respective incubation period for each sheep. Throughout the time course study, PrPSc accumulation was not detected antemortem by immunohistochemistry in rectal tissue at any timepoint for any sheep. RT-QuIC results were inconsistently positive throughout the timepoints tested for each sheep; however, each sheep had at least one timepoint detected positive. When assessing serum Nf-L utility using receiver operator characteristic curves against different clinical parameters, such as asymptomatic and symptomatic (pruritus or neurologic signs), results showed that Nf-L was most useful at being an indicator of disease only late in disease progression when neurologic signs were present. CONCLUSION: Serum Nf-L concentrations in the cohort of sheep increased as disease progressed; however, serum Nf-L did not increase during the presymptomatic window. The levels increased substantially throughout the final 10% of the animals' scrapie incubation period when other clinical signs were present. Serum Nf-L is not a reliable biomarker for pre-clinical detection of scrapie.


Assuntos
Príons , Scrapie , Humanos , Ovinos , Animais , Scrapie/genética , Proteínas PrPSc/metabolismo , Filamentos Intermediários/metabolismo , Príons/metabolismo , Encéfalo/metabolismo , Biomarcadores
5.
Acta Neuropathol ; 147(1): 17, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231266

RESUMO

Definitive diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrPSc). Our previous study revealed that PrPSc-seeding activity (PrPSc-SA) is detectable in skin of sCJD patients by an ultrasensitive PrPSc seed amplification assay (PrPSc-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2-3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls. The skin samples were analyzed for PrPSc-SA by RT-QuIC assay. The results were compared with demographic information, clinical manifestations, cerebrospinal fluid (CSF) PrPSc-SA, other laboratory tests, subtypes of prion diseases defined by the methionine (M) or valine (V) polymorphism at residue 129 of PrP, PrPSc types (#1 or #2), and gene mutations in deceased patients. RT-QuIC assays of the cohort #1 by two independent laboratories gave 87.3% or 91.3% sensitivity and 94.7% or 100% specificity, respectively. The cohort #2 showed sensitivity of 89.4% and specificity of 95.5%. RT-QuIC of CSF available from 212 cases gave 89.7% sensitivity and 94.1% specificity. The sensitivity of skin RT-QuIC was subtype dependent, being highest in sCJDVV1-2 subtype, followed by VV2, MV1-2, MV1, MV2, MM1, MM1-2, MM2, and VV1. The skin area next to the ear gave highest sensitivity, followed by lower back and apex of the head. Although no difference in brain PrPSc-SA was detected between the cases with false negative and true positive skin RT-QuIC results, the disease duration was significantly longer with the false negatives [12.0 ± 13.3 (months, SD) vs. 6.5 ± 6.4, p < 0.001]. Our study validates skin PrPSc-SA as a biomarker for the detection of prion diseases, which is influenced by the PrPSc types, PRNP 129 polymorphisms, dermatome sampled, and disease duration.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/genética , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Biomarcadores
6.
PLoS Pathog ; 19(12): e1011815, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048370

RESUMO

Prion agents occur in strains that are encoded by the structure of the misfolded prion protein (PrPSc). Prion strains can influence disease phenotype and the potential for interspecies transmission. Little is known about the potential transmission of prions between sheep and deer. Previously, the classical US scrapie isolate (No.13-7) had a 100% attack rate in white-tailed deer after oronasal challenge. The purpose of this study was to test the susceptibility of sheep to challenge with the scrapie agent after passage through white-tailed deer (WTD scrapie). Lambs of various prion protein genotypes were oronasally challenged with WTD scrapie. Sheep were euthanized and necropsied upon development of clinical signs or at the end of the experiment (72 months post-inoculation). Enzyme immunoassay, western blot, and immunohistochemistry demonstrated PrPSc in 4 of 10 sheep with the fastest incubation occurring in VRQ/VRQ sheep, which contrasts the original No.13-7 inoculum with a faster incubation in ARQ/ARQ sheep. Shorter incubation periods in VRQ/VRQ sheep than ARQ/ARQ sheep after passage through deer was suggestive of a phenotype change, so comparisons were made in ovinized mice and with sheep with known strains of classical sheep scrapie: No. 13-7 and x-124 (that has a more rapid incubation in VRQ/VRQ sheep). After mouse bioassay, the WTD scrapie and x-124 isolates have similar incubation periods and PrPSc conformational stability that are markedly different than the original No. 13-7 inoculum. Furthermore, brain tissues of sheep with WTD scrapie and x-124 scrapie have similar patterns of immunoreactivity that are distinct from sheep with No. 13-7 scrapie. Multiple lines of evidence suggest a phenotype switch when No. 13-7 scrapie prions are passaged through deer. This represents one example of interspecies transmission of prions resulting in the emergence or selection of new strain properties that could confound disease eradication and control efforts.


Assuntos
Cervos , Príons , Scrapie , Ovinos , Animais , Camundongos , Scrapie/metabolismo , Cervos/metabolismo , Proteínas Priônicas/genética , Príons/metabolismo , Genótipo , Fenótipo
7.
Front Vet Sci ; 10: 1301998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026617

RESUMO

In 2006, a case of atypical H-type BSE (H-BSE) was found to be associated with a germline mutation in the PRNP gene that resulted in a lysine substitution for glutamic acid at codon 211 (E211K). The E211K amino acid substitution in cattle is analogous to E200K in humans, which is associated with the development of genetic Creutzfeldt-Jakob disease (CJD). In the present study, we aimed to determine the effect of the EK211 prion protein genotype on incubation time in cattle inoculated with the agent of H-BSE; to characterize the molecular profile of H-BSE in KK211 and EK211 genotype cattle; and to assess the influence of serial passage on BSE strain. Eight cattle, representing three PRNP genotype groups (EE211, EK211, and KK211), were intracranially inoculated with the agent of H-BSE originating from either a case in a cow with the EE211 prion protein genotype or a case in a cow with E211K amino acid substitution. All inoculated animals developed clinical disease; post-mortem samples were collected, and prion disease was confirmed through enzyme immunoassay, anti-PrPSc immunohistochemistry, and western blot. Western blot molecular analysis revealed distinct patterns in a steer with KK211 H-BSE compared to EK211 and EE211 cattle. Incubation periods were significantly shorter in cattle with the EK211 and KK211 genotypes compared to the EE211 genotype. Inoculum type did not significantly influence the incubation period. This study demonstrates a shorter incubation period for H-BSE in cattle with the K211 genotype in both the homozygous and heterozygous forms.

8.
J Am Soc Mass Spectrom ; 34(2): 245-254, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622794

RESUMO

In sheep, the transmissibility and progression of scrapie, a sheep prion (PrPSc) disease, is strongly dependent upon specific amino acid polymorphisms in the natively expressed prion protein (PrPC). Sheep expressing PrPC with lysine (K) polymorphism at position 171 (K171) are partially resistant to oronasal dosing of classical sheep scrapie. In addition, scrapie infected sheep expressing the K171 polymorphism show a longer incubation period compared to sheep homozygous (glutamine (Q)) at position 171. Quantitating the amount of the K171 polymorphism in a sheep scrapie sample can provide important information on the composition of PrPSc. A tryptic peptide, 159R.YPNQVYYRPVDK.Y172, derived from the digestion of 171K recombinant PrP, was identified as an analyte peptide suitable for a multiple reaction monitoring-based analysis. This method, using 15N-labeled analogs and another internal peptide from the proteinase K-resistant core, permits the simultaneous quantitation of the total amount of PrP and the proportion of K171 polymorphism in the sample. Background molecules with similar retention times and transitions were present in samples from scrapie-infected sheep. Proteinase K digestion followed by ultracentrifugation-based isolation or phosphotungstic acid-based isolation were employed to minimize the contribution of those background molecules, making this approach suitable for quantitating the amount of the K171 polymorphism in heterozygous scrapie infected sheep.


Assuntos
Scrapie , Animais , Ovinos , Scrapie/genética , Scrapie/metabolismo , Lisina/metabolismo , Endopeptidase K , Proteínas Priônicas , Espectrometria de Massas , Encéfalo/metabolismo
9.
J Infect Dis ; 227(12): 1386-1395, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36344485

RESUMO

BACKGROUND: Classic scrapie is a prion disease of sheep and goats that is associated with accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the prion disease of cervids. This study was conducted to determine the susceptibility of white-tailed deer (WTD) to the classic scrapie agent. METHODS: We inoculated WTD (n = 5) by means of a concurrent oral/intranasal exposure with the classic scrapie agent from sheep or oronasally with the classic scrapie agent from goats (n = 6). RESULTS: All deer exposed to the agent of classic scrapie from sheep accumulated PrPSc. PrPSc was detected in lymphoid tissues at preclinical time points, and necropsies in deer 28 months after inoculation showed clinical signs, spongiform lesions, and widespread PrPSc in neural and lymphoid tissues. Western blots on samples from the brainstem, cerebellum, and lymph nodes of scrapie-infected WTD have a molecular profile similar to CWD and distinct from samples from the cerebral cortex, retina, or the original classic scrapie inoculum. There was no evidence of PrPSc in any of the WTD inoculated with classic scrapie prions from goats. CONCLUSIONS: WTD are susceptible to the agent of classic scrapie from sheep, and differentiation from CWD may be difficult.


Assuntos
Cervos , Doenças Priônicas , Scrapie , Doença de Emaciação Crônica , Animais , Ovinos , Scrapie/metabolismo , Scrapie/patologia , Cervos/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/veterinária , Proteínas PrPSc/metabolismo , Doença de Emaciação Crônica/metabolismo , Cabras/metabolismo
10.
Vet Res Commun ; 46(4): 1377-1380, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36219301

RESUMO

This study examines the effect of various infectious prion titers within the dynamic range as measured by ELISA on incubation period. We inoculated ovinized transgenic mice with seven decreasing dilutions of a fast-incubating scrapie strain. The highest inoculum group was a 20% w/v brain homogenate from a sheep with scrapie. The subsequent six inoculum dilutions ranged from the highest ELISA optical density reading of 4.000 to a dilution where scrapie prions were not detectable by ELISA. Multiple comparison analysis demonstrated variation in the incubation periods between some inoculum groups. Incubation periods were similar between inoculum groups unless their optical density differed by more than ≈2 units of absorbance. These data will inform the interpretation of future studies that compare incubation periods in experimentally inoculated animals for TSE research.


Assuntos
Príons , Scrapie , Doenças dos Ovinos , Animais , Camundongos , Encéfalo/metabolismo , Ensaio de Imunoadsorção Enzimática/veterinária , Período de Incubação de Doenças Infecciosas , Camundongos Transgênicos , Príons/metabolismo , Ovinos
11.
Res Vet Sci ; 152: 497-503, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36162234

RESUMO

The agent of scrapie is resistant to most chemical and physical methods of inactivation. Prions bind to soils, metals, and various materials and persist in the environment confounding the control of prion diseases. Most methods of prion inactivation require severe conditions such as prolong exposure to sodium hypochlorite or autoclaving, which may not be suitable for field conditions. We evaluated the efficacy of a combinatorial approach to inactivation of US scrapie strain x124 under the mild conditions of treating scrapie-affected brain homogenate with sodium percarbonate (SPC), sodium dodecyl sulfate (SDS), or in combination followed by proteinase K (PK) digestion at room temperature. Western blot analysis of treated brain homogenate demonstrates partial reduction in PrPSc immunoreactivity. Genetically susceptible VRQ/ARQ Suffolk sheep were oronasally inoculated with 1 g of SPC (n = 1), SDS (n = 2), SDS + PK (n = 2), and SPC + SDS + PK (n = 4) treated brain homogenate. Sheep were assessed daily for clinical signs, euthanized at the development of clinical disease, and tissues were assessed for accumulation of PrPSc. Scrapie status in all sheep was determined by western blot, enzyme immunoassay, and immunohistochemistry. Mean incubation periods (IPs) for SPC (11.9 months, 0% survival), SDS (12.6 months, 0% survival), SDS + PK (14.0 months, 0% survival), and SPC + SDS + PK (12.5 months, 25% survival) were increased compared to positive control sheep (n = 2, 10.7 months, 0% survival) by 1.2, 1.9, 3.3, and 1.8 months, respectively. Treatment did not influence PrPSc accumulation and distribution at the clinical stage of disease. Differences in mean IPs and survival indicates partial but not complete reduction in scrapie infectivity.


Assuntos
Príons , Scrapie , Doenças dos Ovinos , Animais , Ovinos , Endopeptidase K/metabolismo , Proteínas PrPSc/análise , Dodecilsulfato de Sódio/farmacologia , Dodecilsulfato de Sódio/metabolismo , Príons/metabolismo , Encéfalo/metabolismo , Suscetibilidade a Doenças/veterinária , Doenças dos Ovinos/metabolismo
12.
Viruses ; 14(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891558

RESUMO

The transmission characteristics of prion diseases are influenced by host prion protein sequence and, therefore, the host species. Chronic wasting disease (CWD), a prion disease of cervids, has widespread geographical distribution throughout North America and occurs in both wild and farmed populations. CWD prions contaminate the environment through scattered excrement and decomposing carcasses. Fresh carcasses with CWD prions are accessible by free-ranging mesopredators such as raccoons and may provide a route of exposure. Previous studies demonstrated the susceptibility of raccoons to CWD from white-tailed deer. In this study, we demonstrate that white-tailed deer replicate raccoon-passaged CWD prions which results in clinical disease similar to intraspecies CWD transmission. Six white-tailed deer were oronasally inoculated with brain homogenate from a raccoon with CWD. All six deer developed clinical disease, had widespread lymphoid distribution of misfolded CWD prions (PrPSc), and had neuropathologic lesions with PrPSc accumulation in the brain. The presence of PrPSc was confirmed by immunohistochemistry, enzyme-linked immunoassay, and western blot. The western blot migration pattern of raccoon-passaged CWD was different from white-tailed deer CWD. Transmission of raccoon CWD back to white-tailed deer resulted in an interposed molecular phenotype that was measurably different from white-tailed deer CWD.


Assuntos
Cervos , Doenças Priônicas , Príons , Doença de Emaciação Crônica , Animais , Príons/metabolismo , Guaxinins
13.
Emerg Infect Dis ; 28(4): 793-801, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318913

RESUMO

Chronic wasting disease (CWD) is a naturally-occurring neurodegenerative disease of cervids. Raccoons (Procyon lotor) and meadow voles (Microtus pennsylvanicus) have previously been shown to be susceptible to the CWD agent. To investigate the potential for transmission of the agent of CWD from white-tailed deer to voles and subsequently to raccoons, we intracranially inoculated raccoons with brain homogenate from a CWD-affected white-tailed deer (CWDWtd) or derivatives of this isolate after it had been passaged through voles 1 or 5 times. We found that passage of the CWDWtd isolate through voles led to a change in the biologic behavior of the CWD agent, including increased attack rates and decreased incubation periods in raccoons. A better understanding of the dynamics of cross-species transmission of CWD prions can provide insights into how these infectious proteins evolve in new hosts.


Assuntos
Cervos , Doenças Neurodegenerativas , Doença de Emaciação Crônica , Animais , Arvicolinae , Incidência , Período de Incubação de Doenças Infecciosas , Guaxinins , Doença de Emaciação Crônica/epidemiologia
14.
Viruses ; 13(12)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34960722

RESUMO

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.


Assuntos
Doenças Priônicas/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Animais , Humanos , Doenças Priônicas/genética , Doenças Priônicas/patologia , Proteínas Priônicas/genética , Dobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia
15.
Emerg Infect Dis ; 27(12): 3156-3158, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34808075

RESUMO

Chronic wasting disease (CWD) is a fatal prion disease of cervids. We examined host range of CWD by oronasally inoculating Suffolk sheep with brain homogenate from a CWD-positive white-tailed deer. Sixty months after inoculation, 1/7 sheep had immunoreactivity against the misfolded form of prion protein in lymphoid tissue. Results were confirmed by mouse bioassay.


Assuntos
Cervos , Doenças Priônicas , Príons , Doença de Emaciação Crônica , Animais , Camundongos , Príons/genética , Ovinos
16.
Acta Neuropathol Commun ; 9(1): 158, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565488

RESUMO

Chronic wasting disease (CWD) is a cervid prion disease caused by the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC). It has been spreading rapidly in North America and also found in Asia and Europe. Although bovine spongiform encephalopathy (i.e. mad cow disease) is the only animal prion disease known to be zoonotic, the transmissibility of CWD to humans remains uncertain. Here we report the generation of the first CWD-derived infectious human PrPSc by elk CWD PrPSc-seeded conversion of PrPC in normal human brain homogenates using in vitro protein misfolding cyclic amplification (PMCA). Western blotting with human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPSc was derived from the human PrPC substrate. Two lines of humanized transgenic mice expressing human PrP with either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPSc patterns and neuropathological changes in the brain. Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSc can cross the species barrier to convert human PrPC into infectious PrPSc that can produce bona fide prion disease when inoculated into humanized transgenic mice.


Assuntos
Cervos , Proteínas PrPSc , Doença de Emaciação Crônica , Zoonoses/patologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Proteínas PrPC
17.
J Vet Diagn Invest ; 33(4): 711-720, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34047228

RESUMO

The origin of chronic wasting disease (CWD) in cervids is unclear. One hypothesis suggests that CWD originated from scrapie in sheep. We compared the disease phenotype of sheep-adapted CWD to classical scrapie in sheep. We inoculated sheep intracranially with brain homogenate from first-passage mule deer CWD in sheep (sCWDmd). The attack rate in second-passage sheep was 100% (12 of 12). Sheep had prominent lymphoid accumulations of PrPSc reminiscent of classical scrapie. The pattern and distribution of PrPSc in the brains of sheep with CWDmd was similar to scrapie strain 13-7 but different from scrapie strain x124. The western blot glycoprofiles of sCWDmd were indistinguishable from scrapie strain 13-7; however, independent of sheep genotype, glycoprofiles of sCWDmd were different than x124. When sheep genotypes were evaluated individually, there was considerable overlap in the glycoprofiles that precluded significant discrimination between sheep CWD and scrapie strains. Our data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. Given our results, current detection techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally. It is unknown if sheep are naturally vulnerable to CWD; however, the susceptibility of sheep after intracranial inoculation and lymphoid accumulation indicates that the species barrier is not absolute.


Assuntos
Cervos , Scrapie/transmissão , Doença de Emaciação Crônica/transmissão , Animais , Western Blotting/veterinária , Encéfalo , Genótipo , Proteínas Priônicas/genética , Scrapie/genética , Ovinos
18.
Mol Neurobiol ; 58(9): 4280-4292, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33983547

RESUMO

Previous studies have revealed that the infectious scrapie isoform of prion protein (PrPSc) harbored in the skin tissue of patients or animals with prion diseases can be amplified and detected through the serial protein misfolding cyclic amplification (sPMCA) or real-time quaking-induced conversion (RT-QuIC) assays. These findings suggest that skin PrPSc-seeding activity may serve as a biomarker for the diagnosis of prion diseases; however, its utility as a biomarker for prion therapeutics remains largely unknown. Cellulose ethers (CEs, such as TC-5RW), widely used as food and pharmaceutical additives, have recently been shown to prolong the lifespan of prion-infected mice and hamsters. Here we report that in transgenic (Tg) mice expressing hamster cellular prion protein (PrPC) infected with the 263K prion, the prion-seeding activity becomes undetectable in the skin tissues of TC-5RW-treated Tg mice by both sPMCA and RT-QuIC assays, whereas such prion-seeding activity is readily detectable in the skin of untreated mice. Notably, TC-5RW exhibits an inhibitory effect on the in vitro amplification of PrPSc in both skin and brain tissues by sPMCA and RT-QuIC. Moreover, we reveal that TC-5RW is able to directly decrease protease-resistant PrPSc and inhibit the seeding activity of PrPSc from chronic wasting disease and various human prion diseases. Our results suggest that the level of prion-seeding activity in the skin may serve as a useful biomarker for assessing the therapeutic efficacy of compounds in a clinical trial of prion diseases and that TC-5RW may have the potential for the prevention/treatment of human prion diseases.


Assuntos
Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Pele/metabolismo , Animais , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Camundongos Transgênicos , Doenças Priônicas/patologia
19.
Front Vet Sci ; 8: 643754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748218

RESUMO

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that is fatal to free-range and captive cervids. CWD has been reported in the United States, Canada, South Korea, Norway, Finland, and Sweden, and the case numbers in both wild and farmed cervids are increasing rapidly. Studies indicate that lateral transmission of cervids likely occurs through the shedding of infectious prions in saliva, feces, urine, and blood into the environment. Therefore, the detection of CWD early in the incubation time is advantageous for disease management. In this study, we adapt real-time quacking-induced conversion (RT-QuIC) assays to detect the seeding activity of CWD prions in feces samples from clinical and preclinical white-tailed deer. By optimizing reaction conditions for temperature as well as the salt and salt concentration, prion seeding activity from both clinical and preclinical animals were detected by RT-QuIC. More specifically, all fecal samples collected from 6 to 30 months post inoculation showed seeding activity under the conditions of study. The combination of a highly sensitive detection tool paired with a sample type that may be collected non-invasively allows a useful tool to support CWD surveillance in wild and captive cervids.

20.
PLoS One ; 16(2): e0246503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571246

RESUMO

Scrapie is a transmissible spongiform encephalopathy that occurs in sheep. Atypical/Nor98 scrapie occurs in sheep that tend to be resistant to classical scrapie and it is thought to occur spontaneously. The purpose of this study was to test the transmission of the Atypical/Nor98 scrapie agent in three genotypes of Suffolk sheep and characterize the distribution of misfolded prion protein (PrPSc). Ten sheep were intracranially inoculated with brain homogenate from a sheep with Atypical/Nor98 scrapie. All sheep with the ARQ/ARQ and ARQ/ARR genotypes developed Atypical/Nor98 scrapie confirmed by immunohistochemistry, and one sheep with the VRQ/ARQ genotype had detectable PrPSc consistent with Atypical/Nor98 scrapie at the experimental endpoint of 8 years. Sheep with mild early accumulations of PrPSc in the cerebellum had concomitant retinal PrPSc. Accordingly, large amounts of retinal PrPSc were identified in clinically affected sheep and sheep with dense accumulations of PrPSc in the cerebellum.


Assuntos
Genótipo , Polimorfismo Genético , Proteínas Priônicas/genética , Scrapie/genética , Ovinos/genética , Animais , Haplótipos , Scrapie/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA