Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(10): 1668-1681, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36781220

RESUMO

While the physical signs of opioid withdrawal are most readily observable, withdrawal insidiously drives relapse and contributes to compulsive drug use, by disrupting emotional learning circuits. How these circuits become disrupted during withdrawal is poorly understood. Because amygdala neurons mediate relapse, and are highly opioid sensitive, we hypothesized that opioid withdrawal would induce adaptations in these neurons, opening a window of disrupted emotional learning circuit function. Under normal physiological conditions, synaptic transmission between the basolateral amygdala (BLA) and the neighboring main island (Im) of GABAergic intercalated cells (ITCs) is strongly inhibited by endogenous opioids. Using patch-clamp electrophysiology in brain slices prepared from male rats, we reveal that opioid withdrawal abruptly reduces the ability of these peptides to inhibit neurotransmission, a direct consequence of a protein kinase A (PKA)-driven increase in the synaptic activity of peptidases. Reduced peptide control of neurotransmission in the amygdala shifts the excitatory/inhibitory balance of inputs onto accumbens-projecting amygdala cells involved in relapse. These findings provide novel insights into how peptidases control synaptic activity within the amygdala and presents restoration of endogenous peptide activity during withdrawal as a viable option to mitigate withdrawal-induced disruptions in emotional learning circuits and rescue the relapse behaviors exhibited during opioid withdrawal and beyond into abstinence.SIGNIFICANCE STATEMENT We find that opioid withdrawal dials down inhibitory neuropeptide activity in the amygdala. This disrupts both GABAergic and glutamatergic transmission through amygdala circuits, including reward-related outputs to the nucleus accumbens. This likely disrupts peptide-dependent emotional learning processes in the amygdala during withdrawal and may direct behavior toward compulsive drug use.


Assuntos
Analgésicos Opioides , Síndrome de Abstinência a Substâncias , Ratos , Masculino , Animais , Analgésicos Opioides/farmacologia , Tonsila do Cerebelo/fisiologia , Transmissão Sináptica/fisiologia , Peptídeos/farmacologia , Síndrome de Abstinência a Substâncias/metabolismo , Peptídeo Hidrolases/metabolismo
2.
Nat Metab ; 1(5): 532-545, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31656947

RESUMO

Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets leads to hyperphagia, obesity and reduced lifespan. These effects are not due to elevated BCAA per se or hepatic mTOR activation, but rather due to a shift in the relative quantity of dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and is associated with central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averts the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes need not be due to intrinsic toxicity but, rather, a consequence of hyperphagia driven by AA imbalance.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos/metabolismo , Regulação do Apetite , Expectativa de Vida , Animais , Feminino , Regulação da Expressão Gênica , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Serotonina/metabolismo , Triptofano/metabolismo
3.
Eur J Neurosci ; 50(3): 2065-2074, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30099803

RESUMO

Neural circuits in the amygdala are important for associating the positive experience of drug taking with the coincident environmental cues. During abstinence, cue re-exposure activates the amygdala, increases dopamine release in the amygdala and stimulates relapse to drug use in an opioid dependent manner. Neural circuits in the amygdala and the learning that underlies these behaviours are inhibited by GABAergic synaptic inhibition. A specialised subtype of GABAergic neurons in the amygdala are the clusters of intercalated cells. We focussed on the main-island of intercalated cells because these neurons, located ventromedial to the basolateral amygdala, express very high levels of dopamine D1-receptor and µ-opioid receptor, release enkephalin and are densely innervated by the ventral tegmental area. However, where these neurons project to was not fully described and their regulation by opioids and dopamine was incomplete. To address this issue we electrically stimulated in the main-island of the intercalated cells in rat brain slices and made patch-clamp recordings of GABAergic synaptics from amygdala neurons. We found that main-island neurons had a strong GABAergic inhibitory output to pyramidal neurons of the basolateral nucleus and the medial central nucleus, the major output zones of the amygdala. Opioids inhibited both these synaptic outputs of the intercalated neurons and thus would disinhibit these target zones. Additionally, dopamine acting at D1-receptors inhibited main-island neuron synapses onto other main-island neurons. This data indicates that the inhibitory projections from the main-island neurons could influence multiple aspects of addiction and emotional processing in an opioid and dopamine dependent manner.


Assuntos
Analgésicos Opioides/farmacologia , Dopamina/farmacologia , Sinapses/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Área Tegmentar Ventral/metabolismo
4.
Nat Commun ; 8: 14611, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327612

RESUMO

Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the µ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Medo/fisiologia , Interneurônios/metabolismo , Peptídeos Opioides/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Opioides/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA