Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 61, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863077

RESUMO

Trace Amine Associated Receptor 1 (TAAR1) is a novel pharmaceutical target under investigation for the treatment of several neuropsychiatric conditions. TAAR1 single nucleotide variants (SNV) have been found in patients with schizophrenia and metabolic disorders. However, the frequency of variants in geographically diverse populations and the functional effects of such variants are unknown. In this study, we aimed to characterise the distribution of TAAR1 SNVs in five different WHO regions using the Database of Genotypes and Phenotypes (dbGaP) and conducted a critical computational analysis using available TAAR1 structural data to identify SNVs affecting ligand binding and/or functional regions. Our analysis shows 19 orthosteric, 9 signalling and 16 micro-switch SNVs hypothesised to critically influence the agonist induced TAAR1 activation. These SNVs may non-proportionally influence populations from discrete regions and differentially influence the activity of TAAR1-targeting therapeutics in genetically and geographically diverse populations. Notably, our dataset presented with orthosteric SNVs D1033.32N (found only in the South-East Asian Region and Western Pacific Region) and T1945.42A (found only in South-East Asian Region), and 2 signalling SNVs (V1253.54A/T2526.36A, found in African Region and commonly, respectively), all of which have previously demonstrated to influence ligand induced functions of TAAR1. Furthermore, bioinformatics analysis using SIFT4G, MutationTaster 2, PROVEAN and MutationAssessor predicted all 16 micro-switch SNVs are damaging and may further influence the agonist activation of TAAR1, thereby possibly impacting upon clinical outcomes. Understanding the genetic basis of TAAR1 function and the impact of common mutations within clinical populations is important for the safe and effective utilisation of novel and existing pharmacotherapies.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Polimorfismo de Nucleotídeo Único/genética , Relação Estrutura-Atividade , Genótipo , Ligantes , Receptores Associados a Traços de Amina
2.
Chembiochem ; : e202400242, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777792

RESUMO

Accumulating evidence suggests that G protein-coupled receptors (GPCRs) can exist and function in homodimer and heterodimer forms. The adenosine A1 receptor (A1R) has been shown to form both homodimers and heterodimers, but there is a lack of chemical tools to study these dimeric receptor populations. This work describes the synthesis and pharmacological evaluation of a novel class of bivalent GPCR chemical tools, where each ligand moiety of the bivalent compound contains a sulfonyl fluoride covalent warhead designed to be capable of simultaneously reacting with each A1R of an A1R homodimer. The novel compounds were characterised using radioligand binding assays, including washout assays, and functionally in cAMP assays. The bivalent dicovalent compounds were competitive A1R antagonists and showed evidence of covalent binding and simultaneous binding across an A1R homodimer. Greater selectivity for A1R over the adenosine A3 receptor was observed for bivalent dicovalent over the equivalent monovalent compounds, indicating subtype selectivity can be achieved with dual occupation by a bivalent dicovalent ligand.

3.
Am J Respir Cell Mol Biol ; 69(2): 182-196, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098022

RESUMO

Asthma is a heterogeneous chronic airway disease with an unmet need for improved therapeutics in uncontrolled severe disease. The calcium-sensing receptor (CaSR) is a G protein-coupled receptor upregulated in asthma. The CaSR agonist, spermine, is also increased in asthmatic airways and contributes to bronchoconstriction. CaSR negative allosteric modulators (NAMs) oppose chronic airway inflammation, remodeling, and hyperresponsiveness in murine and guinea pig asthma models, but whether CaSR NAMs are effective acute bronchodilators compared with standard of care has not yet been established. Furthermore, the ability of different classes of NAMs to inhibit spermine-induced CaSR signaling or methacholine (MCh)-induced airway contraction has not been quantified. Here, we show CaSR NAMs differentially inhibit spermine-induced intracellular calcium mobilization and inositol monophosphate accumulation in HEK293 cells stably expressing the CaSR. NAMs reverse MCh-mediated airway contraction in mouse precision-cut lung slices with similar maximal relaxation compared with the standard treatment, salbutamol. Of note, the bronchodilator effects of CaSR NAMs are maintained under conditions of ß2-adrenergic receptor desensitization when salbutamol efficacy is abolished. Furthermore, overnight treatment with some, but not all, CaSR NAMs prevents MCh-mediated bronchoconstriction. These findings further support the CaSR as a putative drug target and NAMs as alternative or adjunct bronchodilators in asthma.


Assuntos
Asma , Broncodilatadores , Camundongos , Humanos , Animais , Cobaias , Broncodilatadores/farmacologia , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/metabolismo , Células HEK293 , Espermina/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Albuterol/farmacologia , Cloreto de Metacolina/farmacologia
4.
Br J Pharmacol ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076128

RESUMO

Epilepsy is one of the most serious and common chronic neurological conditions, characterised by recurrent hypersynchronous electrical activity in the brain that lead to seizures. Despite over 50 million people being affected worldwide, only ~70% of people with epilepsy have their seizures successfully controlled with current pharmacotherapy, and many experience significant psychiatric and physical comorbidities. Adenosine, a ubiquitous purine metabolite, is a potent endogenous anti-epileptic substance that can abolish seizure activity via the adenosine A1 G protein-coupled receptor. Activation of A1 receptors decreases seizure activity in animal models, including models of drug-resistant epilepsy. Recent advances have increased our understanding of epilepsy comorbidities, highlighting the potential for adenosine receptors to modulate epilepsy-associated comorbidities, including cardiovascular dysfunction, sleep and cognition. This review provides an accessible resource of the current advances in understanding the adenosine system as a therapeutic target for epilepsy and epilepsy-associated comorbidities.

6.
Mol Pharmacol ; 103(6): 325-338, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921922

RESUMO

Allosteric modulation of metabotropic glutamate receptor subtype 1 (mGlu1) represents a viable therapeutic target for treating numerous central nervous system disorders. Although multiple chemically distinct mGlu1 positive (PAMs) and negative (NAMs) allosteric modulators have been identified, drug discovery paradigms have not included rigorous pharmacological analysis. In the present study, we hypothesized that existing mGlu1 allosteric modulators possess unappreciated probe-dependent or biased pharmacology. Using human embryonic kidney 293 (HEK293A) cells stably expressing human mGlu1, we screened mGlu1 PAMs and NAMs from divergent chemical scaffolds for modulation of different mGlu1 orthosteric agonists in intracellular calcium (iCa2+) mobilization and inositol monophosphate (IP1) accumulation assays. Operational models of agonism and allosterism were used to derive estimates for important pharmacological parameters such as affinity, efficacy, and cooperativity. Modulation of glutamate and quisqualate-mediated iCa2+ mobilization revealed probe dependence at the level of affinity and cooperativity for both mGlu1 PAMs and NAMs. We also identified the previously described mGlu5 selective NAM PF-06462894 as an mGlu1 NAM with a different pharmacological profile from other NAMs. Differential profiles were also observed when comparing ligand pharmacology between iCa2+ mobilization and IP1 accumulation. The PAMs Ro67-4853 and CPPHA displayed apparent negative cooperativity for modulation of quisqualate affinity, and the NAMs CPCCOEt and PF-06462894 had a marked reduction in cooperativity with quisqualate in IP1 accumulation and upon extended incubation in iCa2+ mobilization assays. These data highlight the importance of rigorous assessment of mGlu1 modulator pharmacology to inform future drug discovery programs for mGlu1 allosteric modulators. SIGNIFICANCE STATEMENT: Metabotropic glutamate receptor subtype 1 (mGlu1) positive and negative allosteric modulators have therapeutic potential in multiple central nervous system disorders. We show that chemically distinct modulators display differential pharmacology with different orthosteric ligands and across divergent signaling pathways at human mGlu1. Such complexities in allosteric ligand pharmacology should be considered in future mGlu1 allosteric drug discovery programs.


Assuntos
Ácido Glutâmico , Receptor de Glutamato Metabotrópico 5 , Humanos , Receptor de Glutamato Metabotrópico 5/metabolismo , Ligantes , Regulação Alostérica , Ácido Quisquálico , Ácido Glutâmico/metabolismo
8.
J Bone Miner Res ; 37(9): 1787-1807, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35848051

RESUMO

The calcium-sensing receptor is a homodimeric class C G protein-coupled receptor (GPCR) that senses extracellular Ca2+ (Ca2+ o ) via a dimeric extracellular Venus flytrap (VFT) unit that activates G protein-dependent signaling via twin Cysteine-rich domains linked to transmembrane heptahelical (HH) bundles. It plays a key role in the regulation of human calcium and thus mineral metabolism. However, the nature of interactions between VFT units and HH bundles, and the impacts of heterozygous or homozygous inactivating mutations, which have implications for disorders of calcium metabolism are not yet clearly defined. Herein we generated CaSR-GABAB1 and CaSR-GABAB2 chimeras subject to GABAB -dependent endoplasmic reticulum sorting to traffic mutant heterodimers to the cell surface. Transfected HEK-293 cells were assessed for Ca2+ o -stimulated Ca2+ i mobilization using mutations in either the VFT domains and/or HH bundle intraloop-2 or intraloop-3. When the same mutation was present in both VFT domains of receptor dimers, analogous to homozygous neonatal severe hyperparathyroidism (NSHPT), receptor function was markedly impaired. Mutant heterodimers containing one wild-type (WT) and one mutant VFT domain, however, corresponding to heterozygous familial hypocalciuric hypercalcemia type-1 (FHH-1), supported maximal signaling with reduced Ca2+ o potency. Thus two WT VFT domains were required for normal Ca2+ o potency and there was a pronounced gene-dosage effect. In contrast, a single WT HH bundle was insufficient for maximal signaling and there was no functional difference between heterodimers in which the mutation was present in one or both intraloops; ie, no gene-dosage effect. Finally, we observed that the Ca2+ o -stimulated CaSR operated exclusively via signaling in-trans and not via combined in-trans and in-cis signaling. We consider how receptor asymmetry may support the underlying mechanisms. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Hipercalcemia , Hiperparatireoidismo Primário , Cálcio/metabolismo , Dosagem de Genes , Células HEK293 , Humanos , Hipercalcemia/genética , Recém-Nascido , Mutação/genética , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Ácido gama-Aminobutírico/genética
9.
Purinergic Signal ; 18(3): 359-381, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870032

RESUMO

Alzheimer's disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer's disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic ß-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer's disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response.


Assuntos
Doença de Alzheimer , Adenosina/metabolismo , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Receptores Purinérgicos P1/metabolismo
11.
ACS Pharmacol Transl Sci ; 5(3): 183-188, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35311018

RESUMO

Schizophrenia is a complex and severe mental illness. Current treatments for schizophrenia typically modulate dopaminergic neurotransmission by D2-receptor blockade. While reducing positive symptoms of schizophrenia, current antipsychotic drugs have little clinical effect on negative symptoms and cognitive impairments. For the last few decades, discovery efforts have sought nondopaminergic compounds with the aim to effectively treat the broad symptoms of schizophrenia. In this viewpoint, we provide an overview on trace-amine associated receptor-1 (TAAR1), which presents a clinically validated nondopaminergic target for treating schizophrenia and related disorders, with significantly less overall side-effect burden. TAAR1 agonists may also be specifically beneficial for the substance abuse comorbidity and metabolic syndrome that is often present in patients with schizophrenia.

12.
Nat Commun ; 13(1): 92, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013280

RESUMO

The glucagon-like peptide-1 receptor (GLP-1R) has broad physiological roles and is a validated target for treatment of metabolic disorders. Despite recent advances in GLP-1R structure elucidation, detailed mechanistic understanding of how different peptides generate profound differences in G protein-mediated signalling is still lacking. Here we combine cryo-electron microscopy, molecular dynamics simulations, receptor mutagenesis and pharmacological assays, to interrogate the mechanism and consequences of GLP-1R binding to four peptide agonists; glucagon-like peptide-1, oxyntomodulin, exendin-4 and exendin-P5. These data reveal that distinctions in peptide N-terminal interactions and dynamics with the GLP-1R transmembrane domain are reciprocally associated with differences in the allosteric coupling to G proteins. In particular, transient interactions with residues at the base of the binding cavity correlate with enhanced kinetics for G protein activation, providing a rationale for differences in G protein-mediated signalling efficacy from distinct agonists.


Assuntos
Exenatida/química , Peptídeo 1 Semelhante ao Glucagon/química , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Oxintomodulina/química , Regulação Alostérica , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Exenatida/genética , Exenatida/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutação , Oxintomodulina/genética , Oxintomodulina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
13.
Mol Psychiatry ; 27(1): 88-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34376825

RESUMO

Current medications for schizophrenia typically modulate dopaminergic neurotransmission. While affecting positive symptoms, antipsychotic drugs have little clinical effect on negative symptoms and cognitive impairment. Moreover, newer 'atypical' antipsychotic drugs also have significant metabolic adverse-effects. The recent positive clinical trial of the novel drug candidate SEP-363856, which targets non-dopamine receptors (trace amine-associated receptor and the 5HT1A receptor), is a potentially promising development for the management of schizophrenia. In this perspective, we briefly overview the role of TAAR1 and the 5HT1A receptor in schizophrenia and explore the specific binding characteristics of SEP-363856 at these receptors. Molecular dynamics simulations (MDS) indicate that SEP-363856 interacts with a small, common set of conserved residues within the TAAR1 and 5HT1A ligand-binding domain. The primary interaction of SEP-363856 involves binding to the negatively charged aspartate residue (Asp1033.32, TAAR1; Asp1163.32, 5HT1A). In general, the binding of SEP-363856 within TAAR1 involves a greater number of aromatic contacts compared to 5HT1A. MDS provides important insights into the molecular basis of binding site interactions of SEP-363856 with TAAR1 and the 5HT1A receptor, which will be beneficial for understanding the pharmacological uniqueness of SEP-363856 and for the design of novel drug candidates for these newly targeted receptors in the treatment of schizophrenia and related disorders.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Humanos , Piranos/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Esquizofrenia/tratamento farmacológico
14.
ChemMedChem ; 16(22): 3451-3462, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34216111

RESUMO

The calcium-sensing receptor (CaSR) is a clinical target in the treatment of hyperparathyroidism and related diseases. However, clinical use of approved CaSR-targeting drugs such as cinacalcet is limited due to adverse side effects including hypocalcaemia, nausea and vomiting, and in some instances, a lack of efficacy. The CaSR agonist and positive allosteric modulator (ago-PAM), AC265347, is chemically distinct from clinically-approved CaSR PAMs. AC265347 potently suppressed parathyroid hormone (PTH) release in rats with a lower propensity to cause hypocalcaemia compared to cinacalcet and may therefore offer benefits over current CaSR PAMs. Here we report a structure activity relationship (SAR) study seeking to optimise AC265347 as a drug candidate and disclose the discovery of AC265347-like compounds with diverse pharmacology and improved physicochemical and drug-like properties.


Assuntos
Receptores de Detecção de Cálcio , Animais , Humanos , Ratos , Regulação Alostérica/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Receptores de Detecção de Cálcio/agonistas , Relação Estrutura-Atividade
15.
RNA ; 27(10): 1220-1240, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34244459

RESUMO

Metabotropic glutamate receptor 4 (mGlu4) is one of eight mGlu receptors within the Class C G protein-coupled receptor superfamily. mGlu4 is primarily localized to the presynaptic membrane of neurons where it functions as an auto and heteroreceptor controlling synaptic release of neurotransmitter. mGlu4 is implicated in numerous disorders and is a promising drug target; however, more remains to be understood about its regulation and pharmacology. Using high-throughput sequencing, we have validated and quantified an adenosine-to-inosine (A-to-I) RNA editing event that converts glutamine 124 to arginine in mGlu4; additionally, we have identified a rare but novel K129R site. Using an in vitro editing assay, we then validated the pre-mRNA duplex that allows for editing by ADAR enzymes and predicted its conservation across the mammalian species. Structural modeling of the mGlu4 protein predicts the Q124R substitution to occur in the B helix of the receptor that is critical for receptor dimerization and activation. Interestingly, editing of a receptor homodimer does not disrupt G protein activation in response to the endogenous agonist, glutamate. Using an assay designed to specifically measure heterodimer populations at the surface, however, we found that Q124R substitution decreased the propensity of mGlu4 to heterodimerize with mGlu2 and mGlu7 Our study is the first to extensively describe the extent and regulatory factors of RNA editing of mGlu4 mRNA transcripts. In addition, we have proposed a novel functional consequence of this editing event that provides insights regarding its effects in vivo and expands the regulatory capacity for mGlu receptors.


Assuntos
Edição de RNA , RNA Mensageiro/genética , Receptores de Glutamato Metabotrópico/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Pareamento de Bases , Sequência de Bases , Aves , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Modelos Moleculares , Neurônios/citologia , Neurônios/metabolismo , Conformação de Ácido Nucleico , Mutação Puntual , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo , Répteis , Homologia de Sequência de Aminoácidos
17.
J Med Chem ; 64(12): 8161-8178, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34120444

RESUMO

Adenosine receptors are attractive therapeutic targets for multiple conditions, including ischemia-reperfusion injury and neuropathic pain. Adenosine receptor drug discovery efforts would be facilitated by the development of appropriate tools to assist in target validation and direct receptor visualization in different native environments. We report the development of the first bifunctional (chemoreactive and clickable) ligands for the adenosine A1 receptor (A1R) and adenosine A3 receptor (A3R) based on an orthosteric antagonist xanthine-based scaffold and on an existing structure-activity relationship. Bifunctional ligands were functional antagonists with nanomolar affinity and irreversible binding at the A1R and A3R. In-depth pharmacological profiling of these bifunctional ligands showed moderate selectivity over A2A and A2B adenosine receptors. Once bound to the receptor, ligands were successfully "clicked" with a cyanine-5 fluorophore containing the complementary "click" partner, enabling receptor detection. These bifunctional ligands are expected to aid in the understanding of A1R and A3R localization and trafficking in native cells and living systems.


Assuntos
Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Sondas Moleculares/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Xantinas/farmacologia , Antagonistas do Receptor A1 de Adenosina/síntese química , Antagonistas do Receptor A3 de Adenosina/síntese química , Alcinos/química , Animais , Azidas/química , Células CHO , Química Click , Cricetulus , Desenho de Fármacos , Corantes Fluorescentes/química , Humanos , Ligantes , Sondas Moleculares/síntese química , Receptor A1 de Adenosina/química , Receptor A3 de Adenosina/química , Xantinas/síntese química
18.
ACS Pharmacol Transl Sci ; 4(2): 666-679, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860192

RESUMO

The CaSR is a class C G protein-coupled receptor (GPCR) that acts as a multimodal chemosensor to maintain diverse homeostatic functions. The CaSR is a clinical therapeutic target in hyperparathyroidism and has emerged as a putative target in several other diseases. These include hyper- and hypocalcaemia caused either by mutations in the CASR gene or in genes that regulate CaSR signaling and expression, and more recently in asthma. The development of CaSR-targeting drugs is complicated by the fact that the CaSR possesses many different binding sites for endogenous and exogenous agonists and allosteric modulators. Binding sites for endogenous and exogenous ligands are located throughout the large CaSR protein and are interconnected in ways that we do not yet fully understand. This review summarizes our current understanding of CaSR physiology, signaling, and structure and how the many different binding sites of the CaSR may be targeted to treat disease.

19.
Mol Pharmacol ; 99(5): 328-341, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33602724

RESUMO

Positive allosteric modulation of metabotropic glutamate subtype 5 (mGlu5) receptor has emerged as a potential new therapeutic strategy for the treatment of schizophrenia and cognitive impairments. However, positive allosteric modulator (PAM) agonist activity has been associated with adverse side effects, and neurotoxicity has also been observed for pure PAMs. The structural and pharmacological basis of therapeutic versus adverse mGlu5 PAM in vivo effects remains unknown. Thus, gaining insights into the signaling fingerprints, as well as the binding kinetics of structurally diverse mGlu5 PAMs, may help in the rational design of compounds with desired properties. We assessed the binding and signaling profiles of N-methyl-5-(phenylethynyl)pyrimidin-2-amine (MPPA), 3-cyano-N-(2,5-diphenylpyrazol-3-yl)benzamide (CDPPB), and 1-[4-(4-chloro-2-fluoro-phenyl)piperazin-1-yl]-2-(4-pyridylmethoxy)ethenone [compound 2c, a close analog of 1-(4-(2-chloro-4-fluorophenyl)piperazin-1-yl)-2-(pyridin-4-ylmethoxy)ethanone] in human embryonic kidney 293A cells stably expressing mGlu5 using Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and receptor internalization assays. Of the three allosteric ligands, only CDPPB had intrinsic agonist efficacy, and it also had the longest receptor residence time and highest affinity. MPPA was a biased PAM, showing higher positive cooperativity with orthosteric agonists in ERK1/2 phosphorylation and Ca2+ mobilization over IP1 accumulation and receptor internalization. In primary cortical neurons, all three PAMs showed stronger positive cooperativity with (S)-3,5-dihydroxyphenylglycine (DHPG) in Ca2+ mobilization over IP1 accumulation. Our characterization of three structurally diverse mGlu5 PAMs provides further molecular pharmacological insights and presents the first assessment of PAM-mediated mGlu5 internalization. SIGNIFICANCE STATEMENT: Enhancing metabotropic glutamate receptor subtype 5 (mGlu5) activity is a promising strategy to treat cognitive and positive symptoms in schizophrenia. It is increasingly evident that positive allosteric modulators (PAMs) of mGlu5 are not all equal in preclinical models; there remains a need to better understand the molecular pharmacological properties of mGlu5 PAMs. This study reports detailed characterization of the binding and functional pharmacological properties of mGlu5 PAMs and is the first study of the effects of mGlu5 PAMs on receptor internalization.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Linhagem Celular , Ácidos Graxos/farmacologia , Feminino , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Ratos
20.
Science ; 372(6538)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33602864

RESUMO

G protein-coupled receptors (GPCRs) are key regulators of information transmission between cells and organs. Despite this, we have only a limited understanding of the behavior of GPCRs in the apo state and the conformational changes upon agonist binding that lead to G protein recruitment and activation. We expressed and purified unmodified apo and peptide-bound calcitonin gene-related peptide (CGRP) receptors from insect cells to determine their cryo-electron microscopy (cryo-EM) structures, and we complemented these with analysis of protein conformational dynamics using hydrogen-deuterium exchange mass spectrometry and three-dimensional variance analysis of the cryo-EM data. Together with our previously published structure of the active, Gs-bound CGRP receptor complex, our work provides insight into the mechanisms of class B1 GPCR activation.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/química , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/química , Linhagem Celular , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Ligantes , Modelos Moleculares , Mariposas , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteína 1 Modificadora da Atividade de Receptores/química , Proteína 1 Modificadora da Atividade de Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA