Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ophthalmic Genet ; : 1-5, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853699

RESUMO

INTRODUCTION: In addition to sensorineural hearing loss, Waardenburg Syndrome (WS) may present with variable pigmentation of skin and choroid, which may simulate other life-threating conditions (e.g. melanoma). CASE REPORT: Two siblings ostensibly presented with unilateral choroidal pigmentary abnormalities concerning for choroidal tumour. Serial ophthalmic examination documented no lesion growth (base or height) whilst the apparent syndromic features (i.e. iris hypochromia, profound sensorineural hearing loss, SNHL), family history (autosomal dominant inheritance) and positive genetic testing (pathogenic MITF variant) led to a revised diagnosis of Waardenburg Syndrome type 2A. CONCLUSION: Sectoral preservation of choroidal pigmentation in WS is rarely associated with choroidal malignancy. Awareness of syndromic features (e.g. SNHL) and access to genetic testing may facilitate early accurate diagnosis (i.e. allay concern for malignancy), enable treatment of modifiable features (e.g. SNHL) and identify other affected relatives.

2.
Can J Ophthalmol ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37678418

RESUMO

OBJECTIVE: To evaluate the success of diagnostic genetic testing in inherited retinal dystrophy (IRD) patients in the clinical setting. DESIGN: Retrospective cohort analysis. PARTICIPANTS: A total of 446 consecutive participants from diverse ethnic backgrounds living in western Canada. METHODS: Clinical information was collected from participants, including family history, and they underwent a full ophthalmic examination with chart review. Those with a suspected IRD were offered panel-based genetic testing of 351 genes between March 1, 2019, and February 28, 2022. The main outcome measure was effect of the genetic testing results on clinical diagnosis. RESULTS: Genetic testing established a conclusive molecular diagnosis in 249 of 446 cases (55.8%), a clearly negative result in 90 of 446 cases (20.1%), and an inconclusive diagnosis in 108 of 446 cases (24.2%). Conclusive disease-causing variants were identified in 69 genes, and the most commonly affected genes were ABCA4 (31 variants), USH2A (25 variants), and RPGR (19 variants). The inconclusive group included likely novel autosomal dominant variants or a pathogenic variant with a variant of uncertain significance in the same gene for a recessive phenotype. Notably, an inconclusive molecular genetic diagnosis was seen in as many as 47.3% of East Asian participants with an outer retinal dystrophy. CONCLUSIONS: This study represents the largest review of molecular genetic testing in IRDs in Canada. That negative or inconclusive results obtained in approximately 45% of cases demonstrates that there is an important need for new research into molecular genetic causes of IRDs. This is particularly true in addressing the problem of interpreting a variant of uncertain significance in ethnic minorities.

3.
Mol Vis ; 29: 329-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264610

RESUMO

Purpose: Autosomal recessive cone and cone-rod dystrophies (CD/CRD) are inherited forms of vison loss. Here, we report on and correlate the clinical phenotypes with the underlying genetic mutations. Methods: Clinical information was collected from subjects, including a family history with a chart review. They underwent a full ophthalmic examination, including best-corrected visual acuity, direct and indirect ophthalmoscopy, color vision testing, color fundus photography, contrast sensitivity, autofluorescence, and spectral domain-optical coherence tomography (SD-OCT), and full-field electroretinography. Next-generation panel-based genetic testing was used to identify DNA variants in subject buccal swab samples. Results: Genetic testing in two patients revealed three novel variants in the TTLL5 gene associated with CD/CRD: two missense variants (c.1433G>A;p.(Arg478Gln), c.241C>G;p.(Leu81Val), and one loss-of-function variant (c.2384_2387del;p.(Ala795Valfs*9). Based on in-silico analysis, structural modeling, and comparison to previously reported mutations, these novel variants are very likely to be disease-causing mutations. Combining retinal imaging with SD-OCT analysis, we observed an unusual sheen in the CD/CRD phenotypes. Conclusion: Based on the protein domain location of novel TTLL5 variants and the localization of TTLL5 to the connecting cilium, we conclude that the CD/CRD disease phenotype is characterized as a ciliopathy caused by protein tracking dysfunction. This initially affects cone photoreceptors, where photoreceptor cilia express a high level of TTLL5, but extends to rod photoreceptors over time. Fundus photography correlated with SD-OCT imaging suggests that the macular sheen characteristically seen with TTLL5 mutations derives from the photoreceptor's outer segments at the posterior pole.


Assuntos
Distrofia de Cones , Distrofias de Cones e Bastonetes , Distrofias Retinianas , Humanos , Células Fotorreceptoras Retinianas Cones , Tomografia de Coerência Óptica , Tubulina (Proteína) , Fenótipo , Tirosina , Proteínas de Transporte
4.
Handb Clin Neurol ; 178: 1-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33832671

RESUMO

Diseases of the retina are common and numerous, with causes ranging over inherited, inflammatory, vascular, infectious, neoplastic, traumatic, toxic, and idiopathic etiologies. A key issue in the diagnosis of retinal disease is the duration of symptoms, which can be acute, chronic, or acute presentations of chronic disease. Clinical examination with direct ophthalmoscopy or, even better, biomicroscopy with a slit lamp and condensing lens, is a key component of diagnosis, which can be enhanced through investigational methods such as fluorescein angiography, optical coherence tomography, or electroretinography. Consideration of the history, visual acuity and visual field, and fundoscopic findings is usually sufficient to determine whether patients need referral on an emergency, urgent, or routine basis. Emphasis is given to vascular disease, age-related macular degeneration, diabetic retinopathy, genetic eye disease, and retinal detachment.


Assuntos
Retinopatia Diabética , Edema Macular , Angiofluoresceinografia , Humanos , Neurologistas , Retina/diagnóstico por imagem
5.
J Tissue Eng Regen Med ; 15(6): 556-566, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33779072

RESUMO

Cell replacement therapy is emerging as an important approach in novel treatments for neurodegenerative diseases. Many problems remain, in particular improvements are needed in the survival of transplanted cells and increasing functional integration into host tissue. These problems arise because of immune rejection, suboptimal precursor cell type, trauma during cell transplantation, and toxic compounds released by dying tissues and nutritional deficiencies. We recently developed an ex vivo system to facilitate identification of factors contributing to the death of transplanted neuronal (photoreceptor) and showed 2.8-fold improvement in transplant cell survival after pretreatment with a novel glycopeptide (PKX-001). In this study, we extended these studies to look at cell survival, maturation, and functional integration in an in vivo rat model of rhodopsin-mutant retinitis pigmentosa causing blindness. We found that only when human photoreceptor precursor cells were preincubated with PKX-001 prior to transplantation, did the cells integrate and mature into cone photoreceptors expressing S-opsin or L/M opsin. In addition, ribbon synapses were observed in the transplanted cells suggesting they were making synaptic connections with the host tissue. Furthermore, optokinetic tracking and electroretinography responses in vivo were significantly improved compared to cell transplants without PKX-001 pre-treatment. These data demonstrate that PKX-001 promotes significant long-term stem cell survival in vivo, providing a platform for further investigation towards the clinical application to repair damaged or diseased retina.


Assuntos
Glicopeptídeos/farmacologia , Células Fotorreceptoras de Vertebrados/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Eletrorretinografia , Feminino , Humanos , Masculino , Células Fotorreceptoras de Vertebrados/transplante , Ratos
6.
Precis Clin Med ; 3(2): 113-126, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35692607

RESUMO

Leber congenital amaurosis (LCA) is a severe, genetically heterogeneous recessive eye disease in which ~ 35% of gene mutations are in-frame nonsense mutations coding for loss-of-function premature termination codons (PTCs) in mRNA. Nonsense suppression therapy allows read-through of PTCs leading to production of full-length protein. A limitation of nonsense suppression is that nonsense-mediated decay (NMD) degrades PTC-containing RNA transcripts. The purpose of this study was to determine whether inhibition of NMD could improve nonsense suppression efficacy in vivo. Using a high-throughput approach in the recessive cep290 zebrafish model of LCA (cep290;Q1223X), we first tested the NMD inhibitor Amlexanox in combination with the nonsense suppression drug Ataluren. We observed reduced retinal cell death and improved visual function. With these positive data, we next investigated whether this strategy was also applicable across species in two mammalian models: Rd12 (rpe65;R44X) and Rd3 (rd3;R107X) mouse models of LCA. In the Rd12 model, cell death was reduced, RPE65 protein was produced, and in vivo visual function testing was improved. We establish for the first time that the mechanism of action of Amlexanox in Rd12 retina was through reduced UPF1 phosphorylation. In the Rd3 model, however, no beneficial effect was observed with Ataluren alone or in combination with Amlexanox. This variation in response establishes that some forms of nonsense mutation LCA can be targeted by RNA therapies, but that this needs to be verified for each genotype. The implementation of precision medicine by identifying better responders to specific drugs is essential for development of validated retinal therapies.

7.
Hum Genet ; 138(8-9): 865-880, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31073883

RESUMO

Ocular coloboma is an uncommon, but often severe, sight-threatening condition that can be identified from birth. This congenital anomaly is thought to be caused by maldevelopment of optic fissure closure during early eye morphogenesis. It has been causally linked to both inherited (genetic) and environmental influences. In particular, as a consequence of work to identify genetic causes of coloboma, new molecular pathways that control optic fissure closure have now been identified. Many more regulatory mechanisms still await better understanding to inform on the development of potential therapies for patients with this malformation. This review provides an update of known coloboma genes, the pathways they influence and how best to manage the condition. In the age of precision medicine, determining the underlying genetic cause in any given patient is of high importance.


Assuntos
Coloboma/genética , Olho/fisiopatologia , Animais , Genética , Humanos , Morfogênese/genética
8.
Hum Genet ; 138(8-9): 1019-1026, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30603775

RESUMO

Over the last three decades, genetic studies have made great strides toward the identification of genes and genetic mechanisms underlying congenital disorders of the eye. However, despite the vast knowledge available this has not translated into treatments to prevent or repair the damage in the clinical setting. Recently, new research in technologies, such as tissue regeneration, next generation designer drugs, and genome editing, have become available for some genetic disorders that might be applicable to congenital ocular diseases in the near future. Here, we provide an overview of the emerging therapeutic modalities and the future prospects they hold for debilitating ocular defects.


Assuntos
Oftalmopatias/genética , Olho/fisiopatologia , Doenças Genéticas Inatas/genética , Animais , Edição de Genes/métodos , Humanos , Regeneração/genética
9.
Mol Neurobiol ; 56(3): 1637-1652, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29911255

RESUMO

Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.


Assuntos
Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Animais , Morte Celular , Modelos Animais de Doenças , Genótipo , Ratos , Ratos Transgênicos , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Rodopsina/genética
10.
Regen Med ; 13(5): 581-593, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113240

RESUMO

The olfactory mucosa contains cells that enable it to generate new neurons and other supporting cells throughout life, allowing it to replace cells of the mucosa that have been damaged by exposure to various insults. In this article, we discuss the different types of stem cell found within the olfactory mucosa and their properties. In particular, the mesenchymal-like cells found within the lamina propria will be reviewed in detail. In addition, we discuss potential applications of olfactory-derived stem cells toward hearing regeneration secondary to either inner hair cell loss or primary or secondary auditory nerve degeneration.


Assuntos
Perda Auditiva/terapia , Mucosa Olfatória , Regeneração , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Células-Tronco , Animais , Células Ciliadas Auditivas Internas , Humanos
11.
Exp Eye Res ; 173: 138-147, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29775563

RESUMO

The fovea is an anatomical specialization of the central retina containing closely packed cone-photoreceptors providing an area of high acuity vision in humans and primates. Despite its key role in the clarity of vision, little is known about the molecular and cellular basis of foveal development, due to the absence of a foveal structure in commonly used laboratory animal models. Of the amniotes the retina in birds of prey and some reptiles do exhibit a typical foveal structure, but they have not been studied in the context of foveal development due to lack of availability of embryonic tissue, lack of captive breeding programs, and limited genomic information. However, the genome for the diurnal bifoveate reptile species Anolis carolinensis (green anole) was recently published and it is possible to collect embryos from this species in captivity. Here, we tested the feasibility of using the anole as a model to study foveal development. Eyes were collected at various stages of development for histological analysis, immunofluorescence, and apoptosis. We show that at embryonic stage (ES) 10 there is peak ganglion cell density at the incipient central foveal region and a single row of cone photoreceptor nuclei. At ES17 the foveal pit begins to form and at this stage there are 3-4 rows of cone nuclei. Post-hatching a further increase in cone density and lengthening of inner and outer segments is observed. A yellowish pigment was seen in the adult central foveal region, but not in the temporal fovea. At ES14 Pax6 was localized across the entire retina, but was more prominent in the ganglion cell layer (GCL) and the part of the inner nuclear layer (INL) containing amacrine cell bodies. However, at ES17 Pax6 expression in the ganglion cells of the central retina was markedly reduced. Bioinformatic analysis revealed that 86% of human candidate foveal hypoplasia genes had an orthologous gene or DNA sequence in the green anole. These findings provide the first insight into foveal morphogenesis in the green anole and suggest that it could be a very useful model for investigating the molecular signals driving foveal development, and thus inform on human foveal development and disease.


Assuntos
Fóvea Central/embriologia , Fóvea Central/crescimento & desenvolvimento , Lagartos , Modelos Animais , Morfogênese/fisiologia , Animais , Contagem de Células , Opsinas dos Cones/metabolismo , Feminino , Marcação In Situ das Extremidades Cortadas , Microscopia Confocal , Fator de Transcrição PAX6/metabolismo , Retina/citologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo
12.
Can J Ophthalmol ; 52(6): 570-577, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29217025

RESUMO

OBJECTIVE: To describe the clinical presentation and genotype of subjects with aniridia with a particular focus on foveal hypoplasia. DESIGN: Prospective cohort study. PARTICIPANTS: Thirty-three Canadian participants with aniridia and of various ethnic backgrounds residing in British Columbia. METHODS: Full ophthalmic examinations and posterior segment spectral domain-optical coherence tomography (SD-OCT) imaging were performed. Foveal hypoplasia was graded independently by 2 staff ophthalmologists. PAX6 sequencing was performed and chromosomal 11p anomalies investigated. Candidate gene and single-nucleotide polymorphism sequencing in genes functionally related to PAX6 were also studied. RESULTS: Best corrected visual acuities in the cohort ranged from 0.0 logMAR to no light perception. Total absence of iris tissue was seen in the majority (42 of 66 eyes). In those in whom SD-OCT was possible, foveal hypoplasia was seen in the majority (45 of 56 eyes, 80%). Molecular genetic defects involving PAX6 were identified in 30 participants (91%), including 4 novel PAX6 mutations (Gly18Val; Ser65ProfsX14; Met337ArgfsX18; Ser321CysfsX34) and 4 novel chromosome 11p deletions inclusive of PAX6 or a known PAX6 regulatory region. CONCLUSIONS: The number of PAX6 mutations associated with aniridia continues to increase. Variable foveal architecture despite nearly identical anterior segment disease in 4 participants with an Ex9 ELP4-Ex4 DCDC1 deletion suggested that molecular cues causing variation in disease in the posterior segment differ from those at play in the anterior segment. Results in 3 patients without identifiable PAX6 mutations and a review of the literature suggest that such cases be described as phenocopies rather than actual cases of the syndrome of aniridia.


Assuntos
Aniridia/diagnóstico , Aniridia/genética , Fóvea Central/anormalidades , Mutação , Fator de Transcrição PAX6/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Deleção Cromossômica , Cromossomos Humanos Par 11/genética , Estudos de Coortes , Feminino , Amplificação de Genes , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Adulto Jovem
13.
Mol Ther Nucleic Acids ; 7: 417-428, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28624217

RESUMO

Nonsense mutations leading to premature stop codons are common occurring in approximately 12% of all human genetic diseases. Thus, pharmacological nonsense mutation suppression strategies would be beneficial to a large number of patients if the drugs could be targeted to the affected tissues at the appropriate time. Here, we used nonsense suppression to manipulate Pax6 dosage at different developmental times in the eye of the small eye (Pax6Sey/+; G194X) mouse model of aniridia. Efficacy was assessed by functional assays for visual capacity, including electroretinography and optokinetic tracking (OKT), in addition to histological and biochemical studies. Malformation defects in the Pax6Sey/+ postnatal eye responded to topically delivered nonsense suppression in a dose- and time-dependent manner. Elevated levels of Mmp9, a direct downstream target of Pax6 in the cornea, were observed with the different treatment regimens. The lens capsule was particularly sensitive to Pax6 dosage, revealing a potential new role for Pax6 in lens capsule maintenance and development. The remarkable capacity of malformed ocular tissue to respond postnatally to Pax6 dosage in vivo demonstrates that the use of nonsense suppression could be a valuable therapeutic approach for blinding diseases caused by nonsense mutations.

14.
J Tissue Eng Regen Med ; 11(9): 2658-2662, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27229654

RESUMO

Cell therapy, to replace lost tissue, is a promising approach for the treatment of various neurodegenerative diseases. Many studies suggest, however, that the percentage of transplanted cells that survive and undergo functional integration remains low as a result of immune rejection, suboptimal precursor cell type, trauma during cell transplantation, toxic compounds released by dying tissues or nutritional deficiencies. We recently developed an ex vivo system to facilitate identification of factors contributing to the death of transplanted neuronal (photoreceptor) cells and compounds that block these toxic effects. In this system, photoreceptor precursor cells (PPCs) are sandwiched between a neurosensory retinal explant and retinal pigment epithelium derived from human embryonic stem cells. Explant medium was collected to identify toxic components and PPC survival was assessed by flow cytometry. We also assessed the potential for AAGP™, a cryopreservative molecule, to improve PPC survival. We identified elevated prostaglandin E2 (PGE2) in the explant medium and demonstrated that AAGP™ reduced PGE2 levels by 2.6-fold. A pro-inflammatory stress assay suggested that this may result from AAGP™ inhibition of cyclo-oxygenase-2 (COX-2) expression. We confirmed that PGE2 reduced the viability of cultured PPCs by 44% and found that the survival rate of PPCs pretreated with AAGP™ was 2.8-fold higher than in untreated PPCs. These data suggest that PGE2 release from necrotic tissue may be one factor that reduces the survival of transplanted precursor cells and that the pro-survival molecule AAGP™ may improve long-term transplanted cell viability. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Proteínas Anticongelantes/farmacologia , Células Fotorreceptoras de Vertebrados/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Células-Tronco/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Células Fotorreceptoras de Vertebrados/citologia , Epitélio Pigmentado da Retina/citologia , Células-Tronco/citologia
15.
Mol Vis ; 22: 718-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27390514

RESUMO

PURPOSE: X-linked retinoschisis (XLRS) is juvenile-onset macular degeneration caused by haploinsufficiency of the extracellular cell adhesion protein retinoschisin (RS1). RS1 mutations can lead to either a non-functional protein or the absence of protein secretion, and it has been established that extracellular deficiency of RS1 is the underlying cause of the phenotype. Therefore, we hypothesized that an ex vivo gene therapy strategy could be used to deliver sufficient extracellular RS1 to reverse the phenotype seen in XLRS. Here, we used adipose-derived, syngeneic mesenchymal stem cells (MSCs) that were genetically modified to secrete human RS1 and then delivered these cells by intravitreal injection to the retina of the Rs1h knockout mouse model of XLRS. METHODS: MSCs were electroporated with two transgene expression systems (cytomegalovirus (CMV)-controlled constitutive and doxycycline-induced Tet-On controlled inducible), both driving expression of human RS1 cDNA. The stably transfected cells, using either constitutive mesenchymal stem cell (MSC) or inducible MSC cassettes, were assayed for their RS1 secretion profile. For single injection studies, 100,000 genetically modified MSCs were injected into the vitreous cavity of the Rs1h knockout mouse eye at P21, and data were recorded at 2, 4, and 8 weeks post-injection. The control groups received either unmodified MSCs or vehicle injection. For the multiple injection studies, the mice received intravitreal MSC injections at P21, P60, and P90 with data collection at P120. For the single- and multiple-injection studies, the outcomes were measured with electroretinography, optokinetic tracking responses (OKT), histology, and immunohistochemistry. RESULTS: Two lines of genetically modified MSCs were established and found to secrete RS1 at a rate of 8 ng/million cells/day. Following intravitreal injection, RS1-expressing MSCs were found mainly in the inner retinal layers. Two weeks after a single injection of MSCs, the area of the schisis cavities was reduced by 65% with constitutive MSCs and by 83% with inducible MSCs, demonstrating improved inner nuclear layer architecture. This benefit was maintained up to 8 weeks post-injection and corresponded to a significant improvement in the electroretinogram (ERG) b-/a-wave ratio at 8 weeks (2.6 inducible MSCs; 1.4 untreated eyes, p<0.05). At 4 months after multiple injections, the schisis cavity areas were reduced by 78% for inducible MSCs and constitutive MSCs, more photoreceptor nuclei were present (700/µm constitutive MSC; 750/µm inducible MSC; 383/µm untreated), and the ERG b-wave was significantly improved (threefold higher with constitutive MSCs and twofold higher with inducible MSCs) compared to the untreated control group. CONCLUSIONS: These results establish that extracellular delivery of RS1 rescues the structural and functional deficits in the Rs1h knockout mouse model and that this ex vivo gene therapy approach can inhibit progression of disease. This proof-of-principle work suggests that other inherited retinal degenerations caused by a deficiency of extracellular matrix proteins could be targeted by this strategy.


Assuntos
Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Terapia Genética , Retinosquise/terapia , Animais , Citomegalovirus/genética , Modelos Animais de Doenças , Eletroporação , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Injeções Intravítreas , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Retina/fisiologia , Retinosquise/genética , Retinosquise/fisiopatologia , Transfecção
16.
Hum Mol Genet ; 25(8): 1501-16, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27008885

RESUMO

The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1ß and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Rodopsina/genética , Animais , Efeito Espectador/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Ratos , Ratos Transgênicos , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
Methods Mol Biol ; 1307: 357-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24301073

RESUMO

Transplantation of photoreceptor precursor cells (PPCs) differentiated from human embryonic stem cells (hESCs) is a promising approach to treat common blinding diseases such as age-related macular degeneration and retinitis pigmentosa. However, existing PPC generation methods are inefficient. To enhance differentiation protocols for rapid and high-yield production of PPCs, we focused on optimizing the handling of the cells by including feeder-independent growth of hESCs, using size-controlled embryoid bodies (EBs), and addition of triiodothyronine (T3) and taurine to the differentiation medium, with subsequent removal of undifferentiated cells via negative cell-selection. Our novel protocol produces higher yields of PPCs than previously reported while reducing the time required for differentiation, which will help understand retinal diseases and facilitate large-scale preclinical trials.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias Humanas/citologia , Células Fotorreceptoras/citologia , Diferenciação Celular/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Citometria de Fluxo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Laminina/farmacologia , Fenômenos Magnéticos , Células Fotorreceptoras/efeitos dos fármacos , Proteoglicanas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
18.
Tissue Eng Part A ; 21(11-12): 1763-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25693608

RESUMO

Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células Fotorreceptoras de Vertebrados/citologia , Retina/citologia , Trombospondina 1/metabolismo , Oxirredutases do Álcool/biossíntese , Oxirredutases do Álcool/genética , Animais , Diferenciação Celular , Linhagem Celular , Transplante de Células , Proteínas Correpressoras , Técnicas de Cocultura , Células Epiteliais/citologia , Humanos , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Ratos , Epitélio Pigmentado da Retina/citologia
19.
J Clin Invest ; 124(1): 111-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24355924

RESUMO

Aniridia is a congenital and progressive panocular condition with poor visual prognosis that is associated with brain, olfactory, and pancreatic abnormalities. Development of aniridia is linked with nonsense mutations that result in paired box 6 (PAX6) haploinsufficiency. Here, we used a mouse model of aniridia to test the hypothesis that manipulation of Pax6 dosage through a mutation-independent nonsense mutation suppression strategy would limit progressive, postnatal damage in the eye. We focused on the nonsense suppression drugs 3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid (ataluren) and gentamicin. Remarkably, we demonstrated that nonsense suppression not only inhibited disease progression but also stably reversed corneal, lens, and retinal malformation defects and restored electrical and behavioral responses of the retina. The most successful results were achieved through topical application of the drug formulation START (0.9% sodium chloride, 1% Tween 80, 1% powdered ataluren, 1% carboxymethylcellulose), which was designed to enhance particle dispersion and to increase suspension viscosity. These observations suggest that the eye retains marked developmental plasticity into the postnatal period and remains sensitive to molecular remodeling. Furthermore, these data indicate that other neurological developmental anomalies associated with dosage-sensitive genetic mutations may be reversible through nonsense suppression therapeutics.


Assuntos
Aniridia/terapia , Proteínas do Olho/genética , Gentamicinas/farmacologia , Proteínas de Homeodomínio/genética , Oxidiazóis/administração & dosagem , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Animais , Aniridia/genética , Aniridia/fisiopatologia , Química Farmacêutica , Códon sem Sentido , Córnea/efeitos dos fármacos , Córnea/patologia , Dosagem de Genes , Gentamicinas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxidiazóis/farmacologia , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/deficiência , Proteínas Repressoras/deficiência , Retina/efeitos dos fármacos , Retina/patologia , Acuidade Visual/efeitos dos fármacos
20.
Hum Mol Genet ; 22(19): 3894-905, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23740938

RESUMO

RD3 is a 23 kDa protein implicated in the stable expression of guanylate cyclase in photoreceptor cells. Truncation mutations are responsible for photoreceptor degeneration and severe early-onset vision loss in Leber congenital amaurosis 12 (LCA12) patients, the rd3 mouse and the rcd2 collie. To further investigate the role of RD3 in photoreceptors and explore gene therapy as a potential treatment for LCA12, we delivered adeno-associated viral vector (AAV8) with a Y733F capsid mutation and containing the mouse Rd3 complementary DNA (cDNA) under the control of the human rhodopsin kinase promoter to photoreceptors of 14-day-old Rb(11.13)4Bnr/J and In (5)30Rk/J strains of rd3 mice by subretinal injections. Strong RD3 transgene expression led to the translocation of guanylate cyclase from the endoplasmic reticulum (ER) to rod and cone outer segments (OSs) as visualized by immunofluorescence microscopy. Guanylate cyclase expression and localization coincided with the survival of rod and cone photoreceptors for at least 7 months. Rod and cone visual function was restored in the In (5)30Rk/J strain of rd3 mice as measured by electroretinography (ERG), but only rod function was recovered in the Rb(11.13)4Bnr/J strain, suggesting that the latter may have another defect in cone phototransduction. These studies indicate that RD3 plays an essential role in the exit of guanylate cyclase from the ER and its trafficking to photoreceptor OSs and provide a 'proof of concept' for AAV-mediated gene therapy as a potential therapeutic treatment for LCA12.


Assuntos
Terapia Genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Guanilato Ciclase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Vetores Genéticos , Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Amaurose Congênita de Leber/terapia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/metabolismo , Retina/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA